Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Z Vet J ; 66(4): 167-171, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29591780

RESUMO

AIMS: To determine if abdominal insufflation with medical air will improve oxygenation and ventilation parameters when compared to insufflation with CO2 in xylazine-sedated sheep undergoing laparoscopic artificial insemination (AI). METHODS: Forty-seven sheep underwent oestrus synchronisation and were fasted for 24 hours prior to laparoscopic AI. Each animal was randomised to receive either CO2 or medical air for abdominal insufflation. An auricular arterial catheter was placed and utilised for serial blood sampling. Respiratory rates (RR) and arterial blood samples were collected at baseline, after xylazine (0.1 mg/kg I/V) sedation, 2 minutes after Trendelenburg positioning, 5 minutes after abdominal insufflation, and 10 minutes after being returned to a standing position. Blood samples were collected in heparinised syringes, stored on ice, and analysed for arterial pH, partial pressure of arterial O2 (PaO2), and CO2 (PaCO2). The number of ewes conceiving to AI was also determined. RESULTS: Repeated measures ANOVA demonstrated temporal effects on RR, PaO2, PaCO2 and arterial pH during the laparoscopic AI procedure (p<0.001), but no difference between insufflation groups (p>0.01). No sheep experienced hypercapnia (PaCO2>50 mmHg) or acidaemia (pH<7.35). Hypoxaemia (PaO2<70 mmHg) was diagnosed during the procedure in 14/22 (64%) ewes in the CO2 group compared with 8/23 (35%) ewes in the medical air group (p=0.053). Overall, 15/20 (75%) ewes in the CO2 group conceived to AI compared with 16/22 (72.7%) in the medical air group (p=0.867). CONCLUSIONS AND CLINICAL RELEVANCE: There were no statistical or clinical differences in RR, PaO2, PaCO2, pH, or conception to AI when comparing the effects of CO2 and medical air as abdominal insufflation gases. None of the sheep experienced hypercapnia or acidaemic, yet 42% (19/45) of sheep developed clinical hypoxaemia, with a higher percentage of ewes in the CO2 group developing hypoxaemia than in the medical air group. Based on the overall analysis, medical air could be utilised as a comparable alternative for abdominal insufflation during laparoscopic AI procedures.


Assuntos
Ar , Dióxido de Carbono , Inseminação Artificial/veterinária , Laparoscopia/veterinária , Ovinos/cirurgia , Filtros de Ar/veterinária , Animais , Gasometria/veterinária , Sincronização do Estro , Feminino , Filtração/veterinária , Inseminação Artificial/métodos , Gravidez , Taxa de Gravidez , Taxa Respiratória , Ovinos/fisiologia
2.
Xenobiotica ; 30(6): 575-88, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10923860

RESUMO

1. The study aimed to ascertain the enzyme kinetic basis for breed differences in the biotransformation of propofol in dog and to identify the responsible canine cytochrome P450 (CYP) isoenzymes. 2. The NADPH-dependent formation of 4-hydroxypropofol (the rate-limiting biotransformation in dog) was assayed using hepatic microsomes from the male greyhound and beagle, and from both sexes in mixed-breed dogs (five of each). 3. Enzyme kinetic analysis revealed that whereas there were no significant differences in Km, Vmax averaged > 3-fold lower in greyhound compared with beagle (p = 0.032). Although average Vmax was > 3-fold higher in the male compared with female mixed-breed dogs, this difference did not achieve statistical significance (p = 0.095), probably because of the high variability of data from mixed-breed dogs. 4. Chloramphenicol (a specific CYP2B11 inhibitor) and diethyldithiocarbamate (a non-specific CYP2 inhibitor) inhibited propofol hydroxylation in all microsomes. Quinine (a CYP2D15 inhibitor) was also inhibitory, but only in one-half of the microsomes examined. Immuno-inhibition by anti-CYP2B1 sera resulted in > 50% reduction in metabolite formation in all dogs except mixed-breed females, which showed a 30% reduction. Differences in propofol hydroxylase activity between microsomal preparations were primarily attributed to a component that was sensitive to inhibition by chloramphenicol and anti-CYP2B1 sera. 5. The results indicate that propofol hydroxylation in dog is primarily mediated by CYP2B11 and that breed (and possibly gender) differences in propofol metabolism may result from differences in the liver content of this CYP.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Propofol/metabolismo , Esteroide Hidroxilases , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Biotransformação/efeitos dos fármacos , Cruzamento , Cloranfenicol/farmacologia , Citocromo P-450 CYP2B1/imunologia , Inibidores das Enzimas do Citocromo P-450 , Família 2 do Citocromo P450 , Ditiocarb/farmacologia , Cães , Feminino , Hidroxilação , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , NADP/metabolismo , Propofol/farmacocinética , Quinina/farmacologia , Caracteres Sexuais , Especificidade da Espécie
3.
Drug Metab Dispos ; 27(11): 1293-9, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10534314

RESUMO

Pharmacokinetic studies indicate that clearance of propofol, an anesthetic agent, is slower in greyhounds compared with other dog breeds. Biotransformation of propofol to 2,6-diisopropyl-1,4-quinol (4-hydroxypropofol) by cytochrome P-450 in the liver is proposed as a critical initial step in the elimination of this drug in dogs. Breed differences in the activity of this enzyme could therefore explain pharmacokinetic differences. An in vitro propofol hydroxylase assay was developed and then used to compare enzyme activities in liver microsomes from male greyhound, beagle, and mixed-breed dogs (five each). HPLC of incubate identified only one NADPH-dependent metabolite, which had a chromatographic retention time and UV absorbance, fluorescence, and mass spectra that were identical with authentic 4-hydroxypropofol standard. HPLC with fluorescence detection provided a highly sensitive quantitation method for 4-hydroxypropofol with a quantitation limit of 8 ng/ml using optimized excitation/emission wavelengths (288 nm/330 nm, respectively). Estimates of apparent K(m) and V(max) for propofol hydroxylation by microsomes from a male beagle dog were 7.3 microM and 3.8 nmol/mg/min, respectively. At a substrate concentration of 20 microM, propofol hydroxylase activity was significantly lower (p =.032) in greyhound microsomes (1.7 +/- 0.4 nmol/mg/min) compared with beagle microsomes (5.1 +/- 1.3 nmol/mg/min) but was not statistically different (p =.42) compared with mixed-breed microsomes (3.1 +/- 1.2 nmol/mg/min). These results indicate that there are breed differences in propofol hydroxylase activity and that deficient hydroxylation of propofol by one or more hepatic cytochrome P-450 isoforms may contribute to slow pharmacokinetic clearance of propofol by greyhounds.


Assuntos
Anestésicos Intravenosos/farmacocinética , Propofol/farmacocinética , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão/métodos , Cães , Hidroxilação , Masculino , Espectrometria de Massas , Especificidade da Espécie , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA