Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Ann Clin Transl Neurol ; 11(6): 1615-1629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750253

RESUMO

OBJECTIVE: COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS: Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS: We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION: These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.


Assuntos
Fenótipo , Transcriptoma , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Epilepsia/genética , Fibroblastos/metabolismo , Adolescente , Transtorno do Espectro Autista/genética , Adulto , Transferases
2.
J Pediatr Orthop ; 44(1): e61-e68, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867374

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, neurodegenerative disorder that manifests with progressive loss of ambulation and refractory dystonia, especially in the early-onset classic form. This leads to osteopenia and stress on long bones, which pose an increased risk of atraumatic femur fractures. The purpose of this study is to describe the unique challenges in managing femur fractures in PKAN and the effect of disease manifestations on surgical outcomes. METHODS: A retrospective case review was conducted on 5 patients (ages 10 to 20 y) with PKAN with a femur fracture requiring surgical intervention. Data regarding initial presentation, surgical treatment, complications, and outcomes were obtained. RESULTS: All patients were non-ambulatory, with 4 of 5 patients sustaining an atraumatic femur fracture in the setting of dystonia episode. One patient had an additional contralateral acetabular fracture. Postoperatively, 4 of the 5 patients sustained orthopaedic complications requiring surgical revision, with 3 of these secondary to dystonia. Overall, 4 required prolonged hospitalization in the setting of refractory dystonia. CONCLUSION: Femur fractures in PKAN present distinct challenges for successful outcomes. A rigid intramedullary rod with proximal and distal interlocking screws is most protective against surgical complications associated with refractory dystonia occurring during the postoperative period. Multidisciplinary planning for postoperative care is essential and may include aggressive sedation and pain management to decrease the risk of subsequent injuries or complications. LEVEL OF EVIDENCE: Level IV.


Assuntos
Distonia , Neurodegeneração Associada a Pantotenato-Quinase , Fraturas da Coluna Vertebral , Humanos , Neurodegeneração Associada a Pantotenato-Quinase/complicações , Neurodegeneração Associada a Pantotenato-Quinase/terapia , Distonia/complicações , Distonia/terapia , Estudos Retrospectivos , Fêmur
3.
Autophagy ; 19(12): 3234-3239, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565733

RESUMO

Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disease associated with severe cognitive and motor deficits. BPAN pathophysiology and phenotypic spectrum are still emerging due to the fact that mutations in the WDR45 (WD repeat domain 45) gene, a regulator of macroautophagy/autophagy, were only identified a decade ago. In the first international symposium dedicated to BPAN, which was held in Lyon, France, a panel of international speakers, including several researchers from the autophagy community, presented their work on human patients, cellular and animal models, carrying WDR45 mutations and their homologs. Autophagy researchers found an opportunity to explore the defective function of autophagy mechanisms associated with WDR45 mutations, which underlie neuronal dysfunction and early death. Importantly, BPAN is one of the few human monogenic neurological diseases targeting a regulator of autophagy, which raises the possibility that it is a relevant model to directly assess the roles of autophagy in neurodegeneration and to develop autophagy restorative therapeutic strategies for more common disorders.Abbreviations: ATG: autophagy related; BPAN: beta-propeller protein-associated neurodegeneration; ER: endoplasmic reticulum; KO: knockout; NBIA: neurodegeneration with brain iron accumulation; PtdIns3P: phosphatidylinositol-3-phosphate; ULK1: unc-51 like autophagy activating kinase 1; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.


Assuntos
Proteínas de Transporte , Doenças Neurodegenerativas , Animais , Humanos , Proteínas de Transporte/genética , Doenças Neurodegenerativas/genética , Autofagia/genética , Mutação , Neurônios
4.
J Mov Disord ; 16(2): 133-137, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37096298

RESUMO

Neurodegenerative disorders associated with high basal ganglia iron are known by the overarching term of 'NBIA' disorders or 'neurodegeneration with brain iron accumulation'. Discovery of their individual genetic bases was greatly enabled by the collection of DNA and clinical data in just a few centers. With each discovery, the remaining idiopathic disorders could be further stratified by common clinical, radiographic or pathological features to enable the next hunt. This iterative process, along with strong and open collaborations, enabled the discoveries of PANK2, PLA2G6, C19orf12, FA2H, WDR45, and COASY gene mutations as underlying PKAN, PLAN, MPAN, FAHN, BPAN, and CoPAN, respectively. The era of Mendelian disease gene discovery is largely behind us, but the history of these discoveries for the NBIA disorders has not yet been told. A brief history is offered here.

5.
Pediatr Neurol ; 138: 1-4, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270151

RESUMO

BACKGROUND: Down syndrome regression disorder (DSRD) is characterized by the sudden loss of adaptive function, cognitive-executive function, and language with abnormal sleep and/or motor control. METHODS: Clinical, laboratory, and imaging data from three individuals with DSRD and iron on brain imaging were reviewed. RESULTS: Three patients with Down syndrome presented with new onset of flat affect, depression, reduced speech, and other neurological symptoms consistent with DSRD. Magnetic resonance imaging showed abnormal iron accumulation in the basal ganglia, as well as calcification in two cases. Molecular diagnostic testing for neurodegeneration with brain iron accumulation was negative in the two individuals tested. CONCLUSIONS: These individuals presented suggest that a subset of individuals with DSRD have abnormal brain iron accumulation. Motor control symptoms reported in DSRD, such as stereotypies and parkinsonism, may reflect this basal ganglia involvement. The presence of abnormal brain iron should not delay or preclude diagnosis and treatment for DSRD.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/complicações , Síndrome de Down/patologia , Ferro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Imageamento por Ressonância Magnética
6.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
7.
Mol Genet Metab ; 137(3): 283-291, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240582

RESUMO

Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Humanos , Coenzima A/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
8.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35662397

RESUMO

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Assuntos
Coenzima A , Microbiota , Animais , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Feminino , Humanos , Mães , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Zigoto/metabolismo
9.
Genome Med ; 14(1): 38, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379322

RESUMO

BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.


Assuntos
RNA , Transcriptoma , Alelos , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-34909266

RESUMO

Background: Neurodegeneration with brain iron accumulation (NBIA) disorders comprise a group of rare but devastating inherited neurological diseases with unifying features of progressive cognitive and motor decline, and increased iron deposition in the basal ganglia. Although at present there are no proven disease-modifying treatments, the severe nature of these monogenic disorders lends to consideration of personalized medicine strategies, including targeted gene therapy. In this review we summarize the progress and future direction towards precision therapies for NBIA disorders. Methods: This review considered all relevant publications up to April 2021 using a systematic search strategy of PubMed and clinical trials databases. Results: We review what is currently known about the underlying pathophysiology of NBIA disorders, common NBIA disease pathways, and how this knowledge has influenced current management strategies and clinical trial design. The safety profile, efficacy and clinical outcome of clinical studies are reviewed. Furthermore, the potential for future therapeutic approaches is also discussed. Discussion: Therapeutic options in NBIAs remain very limited, with no proven disease-modifying treatments at present. However, a number of different approaches are currently under development with increasing focus on targeted precision therapies. Recent advances in the field give hope that novel strategies, such as gene therapy, gene editing and substrate replacement therapies are both scientifically and financially feasible for these conditions. Highlights: This article provides an up-to-date review of the current literature about Neurodegeneration with Brain Iron Accumulation (NBIA), with a focus on disease pathophysiology, current and previously trialed therapies, and future treatments in development, including consideration of potential genetic therapy approaches.


Assuntos
Ferro , Doenças Neurodegenerativas , Encéfalo , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
11.
Dev Med Child Neurol ; 63(12): 1402-1409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347296

RESUMO

This review provides recommendations for the evaluation and management of individuals with beta-propeller protein-associated neurodegeneration (BPAN). BPAN is one of several neurodegenerative disorders with brain iron accumulation along with pantothenate kinase-associated neurodegeneration, PLA2G6-associated neurodegeneration, mitochondrial membrane protein-associated neurodegeneration, fatty acid hydroxylase-associated neurodegeneration, and COASY protein-associated neurodegeneration. BPAN typically presents with global developmental delay and epilepsy in childhood, which is followed by the onset of dystonia and parkinsonism in mid-adolescence or adulthood. BPAN is an X-linked dominant disorder caused by pathogenic variants in WDR45, resulting in a broad clinical phenotype and imaging spectrum. This review, informed by an evaluation of the literature and expert opinion, discusses the clinical phenotype and progression of the disease, imaging findings, epilepsy features, and genetics, and proposes an approach to the initial evaluation and management of disease manifestations across the life span in individuals with BPAN. What this paper adds The complex epilepsy profile of beta-propeller protein-associated neurodegeneration (BPAN) often resolves in adolescence. The treatment for an individual with BPAN is supportive, with attention to sleep disorders, complex epilepsy, and behavioral problems. Individuals with BPAN have shifting needs throughout their life span requiring multidisciplinary care.


Assuntos
Encéfalo/patologia , Ferro/metabolismo , Doenças Neurodegenerativas/diagnóstico , Encéfalo/metabolismo , Gerenciamento Clínico , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
12.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704825

RESUMO

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pré-Escolar , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Adulto Jovem
13.
Brain ; 143(11): 3242-3261, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150406

RESUMO

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Assuntos
Distúrbios Distônicos/genética , Histona-Lisina N-Metiltransferase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Estudos de Coortes , Simulação por Computador , Estimulação Encefálica Profunda , Progressão da Doença , Distúrbios Distônicos/terapia , Doenças do Sistema Endócrino/complicações , Doenças do Sistema Endócrino/genética , Feminino , Retardo do Crescimento Fetal/genética , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doenças da Laringe/etiologia , Doenças da Laringe/terapia , Masculino , Mutação , Mutação de Sentido Incorreto , Fenótipo , Qualidade de Vida , Resultado do Tratamento , Adulto Jovem
14.
Front Neurol ; 11: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013674

RESUMO

Most neurodegeneration with brain iron accumulation (NBIA) disorders can be distinguished by identifying characteristic changes on magnetic resonance imaging (MRI) in combination with clinical findings. However, a significant number of patients with an NBIA disorder confirmed by genetic testing have MRI features that are atypical for their specific disease. The appearance of specific MRI patterns depends on the stage of the disease and the patient's age at evaluation. MRI interpretation can be challenging because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are needed to better define MRI phenotypes in NBIA disorders. The stepwise approach outlined here may help to identify NBIA disorders and delineate the natural course of MRI-identified changes.

15.
J Child Neurol ; 35(4): 259-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31823681

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration. METHODS: A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration. RESULTS: We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1). CONCLUSION: Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.


Assuntos
Maconha Medicinal/uso terapêutico , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Gastrostomia , Humanos , Masculino , Maconha Medicinal/administração & dosagem , Resultado do Tratamento
16.
EMBO Mol Med ; 11(12): e10488, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701655

RESUMO

PKAN, CoPAN, MePAN, and PDH-E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA biosynthesis (PKAN, CoPAN), protein lipoylation (MePAN), and pyruvate dehydrogenase activity (PDH-E2 deficiency). Overlap of their clinical features suggests a common molecular etiology, the identification of which is required to understand their pathophysiology and design treatment strategies. We provide evidence that CoA-dependent activation of mitochondrial acyl carrier protein (mtACP) is a possible process linking these diseases through its effect on PDH activity. CoA is the source for the 4'-phosphopantetheine moiety required for the posttranslational 4'-phosphopantetheinylation needed to activate specific proteins. We show that impaired CoA homeostasis leads to decreased 4'-phosphopantetheinylation of mtACP. This results in a decrease of the active form of mtACP, and in turn a decrease in lipoylation with reduced activity of lipoylated proteins, including PDH. Defects in the steps of a linked CoA-mtACP-PDH pathway cause similar phenotypic abnormalities. By chemically and genetically re-activating PDH, these phenotypes can be rescued, suggesting possible treatment strategies for these diseases.


Assuntos
Proteína de Transporte de Acila/metabolismo , Coenzima A/metabolismo , Doenças Neurodegenerativas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína de Transporte de Acila/genética , Animais , Western Blotting , Linhagem Celular , Drosophila , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Masculino , Doenças Neurodegenerativas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
17.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31660701

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Assuntos
Coenzima A/metabolismo , Dopamina/metabolismo , Ferro/metabolismo , Panteteína/análogos & derivados , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Genótipo , Camundongos , Panteteína/farmacologia , Panteteína/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
18.
Lancet Neurol ; 18(7): 631-642, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31202468

RESUMO

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a rare genetic disorder characterised by progressive generalised dystonia and brain iron accumulation. We assessed whether the iron chelator deferiprone can reduce brain iron and slow disease progression. METHODS: We did an 18-month, randomised, double-blind, placebo-controlled trial (TIRCON2012V1), followed by a pre-planned 18-month, open-label extension study, in patients with PKAN in four hospitals in Germany, Italy, England, and the USA. Patients aged 4 years or older with a genetically confirmed diagnosis of PKAN, a total score of at least 3 points on the Barry-Albright Dystonia (BAD) scale, and no evidence of iron deficiency, neutropenia, or abnormal hepatic or renal function, were randomly allocated (2:1) to receive an oral solution of either deferiprone (30 mg/kg per day divided into two equal doses) or placebo for 18 months. Randomisation was done with a centralised computer random number generator and with stratification based on age group at onset of symptoms. Patients were allocated to groups by a randomisation team not masked for study intervention that was independent of the study. Patients, caregivers, and investigators were masked to treatment allocation. Co-primary endpoints were the change from baseline to month 18 in the total score on the BAD scale (which measures severity of dystonia in eight body regions) and the score at month 18 on the Patient Global Impression of Improvement (PGI-I) scale, which is a patient-reported interpretation of symptom improvement. Efficacy analyses were done on all patients who received at least one dose of the study drug and who provided a baseline and at least one post-baseline efficacy assessment. Safety analyses were done for all patients who received at least one dose of the study drug. Patients who completed the randomised trial were eligible to enrol in a single-arm, open-label extension study of another 18 months, in which all participants received deferiprone with the same regimen as the main study. The trial was registered on ClinicalTrials.gov, number NCT01741532, and EudraCT, number 2012-000845-11. FINDINGS: Following a screening of 100 prospective patients, 88 were randomly assigned to the deferiprone group (n=58) or placebo group (n=30) between Dec 13, 2012, and April 21, 2015. Of these, 76 patients completed the study (49 in the deferiprone group and 27 in the placebo group). After 18 months, the BAD score worsened by a mean of 2·48 points (SE 0·63) in patients in the deferiprone group versus 3·99 points (0·82) for patients in the control group (difference -1·51 points, 95% CI -3·19 to 0·16, p=0·076). No subjective change was detected as assessed by the PGI-I scale: mean scores at month 18 were 4·6 points (SE 0·3) for patients in the deferiprone group versus 4·7 points (0·4) for those in the placebo group (p=0·728). In the extension study, patients continuing deferiprone retained a similar rate of disease progression as assessed by the BAD scale (1·9 points [0·5] in the first 18 months vs 1·4 points [0·4] in the second 18 months, p=0·268), whereas progression in patients switching from placebo to deferiprone seemed to slow (4·4 points [1·1] vs 1·4 points [0·9], p=0·021). Patients did not detect a change in their condition after the additional 18 months of treatment as assessed by the PGI-I scale, with mean scores of 4·1 points [0·2] in the deferiprone-deferiprone group and of 4·7 points [0·3] in the placebo-deferiprone group. Deferiprone was well tolerated and adverse events were similar between the treatment groups, except for anaemia, which was seen in 12 (21%) of 58 patients in the deferiprone group, but was not seen in any patients in the placebo group. No patient discontinued therapy because of anaemia, and three discontinued because of moderate neutropenia. There was one death in each group of the extension study and both were secondary to aspiration. Neither of these events was considered related to deferiprone use. INTERPRETATION: Deferiprone was well tolerated, achieved target engagement (lowering of iron in the basal ganglia), and seemed to somewhat slow disease progression at 18 months, although not significantly, as assessed by the BAD scale. These findings were corroborated by the results of an additional 18 months of treatment in the extension study. The subjective PGI-I scale was largely unchanged during both study periods, indicating that might not be an adequate tool for assessment of disease progression in patients with PKAN. Our trial provides the first indication of a decrease in disease progression in patients with neurodegeneration with brain iron accumulation. The extensive information collected and long follow-up of patients in the trial will improve the definition of appropriate endpoints, increase the understanding of the natural history, and thus help to shape the design of future trials in this ultra-orphan disease. FUNDING: European Commission, US Food and Drug Administration, and ApoPharma Inc.


Assuntos
Deferiprona/uso terapêutico , Quelantes de Ferro/uso terapêutico , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Adolescente , Adulto , Criança , Pré-Escolar , Deferiprona/efeitos adversos , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Quelantes de Ferro/efeitos adversos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
19.
Mol Genet Genomic Med ; 7(7): e00736, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087512

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by pathogenic sequence variants in C19orf12. Autosomal recessive inheritance has been demonstrated. We present evidence of autosomal dominant MPAN and propose a mechanism to explain these cases. METHODS: Two large families with apparently dominant MPAN were investigated; additional singleton cases of MPAN were identified. Gene sequencing and multiplex ligation-dependent probe amplification were used to characterize the causative sequence variants in C19orf12. Post-mortem brain from affected subjects was examined. RESULTS: In two multi-generation non-consanguineous families, we identified different nonsense sequence variations in C19orf12 that segregate with the MPAN phenotype. Brain pathology was similar to that of autosomal recessive MPAN. We additionally identified a preponderance of cases with single heterozygous pathogenic sequence variants, including two with de novo changes. CONCLUSIONS: We present three lines of clinical evidence to demonstrate that MPAN can manifest as a result of only one pathogenic C19orf12 sequence variant. We propose that truncated C19orf12 proteins, resulting from nonsense variants in the final exon in our autosomal dominant cohort, impair function of the normal protein produced from the non-mutated allele via a dominant negative mechanism and cause loss of function. These findings impact the clinical diagnostic evaluation and counseling.


Assuntos
Distúrbios do Metabolismo do Ferro/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Distrofias Neuroaxonais/genética , Adulto , Encéfalo , Códon sem Sentido/genética , Estudos de Coortes , Família , Feminino , Genes Dominantes/genética , Heterozigoto , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Masculino , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Distrofias Neuroaxonais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Linhagem
20.
Mol Genet Metab ; 124(2): 161-167, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29685658

RESUMO

Congenital disorders of manganese metabolism are rare occurrences in children, and medical management of these disorders is complex and challenging. Homozygous exonic mutations in the manganese transporter SLC39A14 have recently been associated with a pediatric-onset neurodegenerative disorder characterized by brain manganese accumulation and clinical signs of manganese neurotoxicity, including parkinsonism-dystonia. We performed whole exome sequencing on DNA samples from two unrelated female children from the United Arab Emirates with progressive movement disorder and brain mineralization, identified a novel homozygous intronic mutation in SLC39A14 in both children, and demonstrated that the mutation leads to aberrant splicing. Both children had consistently elevated serum manganese levels and were diagnosed with SLC39A14-associated manganism. Over a four-year period, we utilized a multidisciplinary management approach for Patient 1 combining decreased manganese dietary intake and chelation with symptomatic management of dystonia. Our treatment strategy appeared to slow disease progression, but did not lead to a cure or reversal of already established deficits. Clinicians should consider testing for noncoding mutations in the diagnosis of congenital disorders of manganese metabolism and utilizing multidisciplinary approaches in the management of these disorders.


Assuntos
Proteínas de Transporte de Cátions/genética , Distúrbios Distônicos/genética , Manganês/metabolismo , Erros Inatos do Metabolismo dos Metais/genética , Mutação , Transtornos Parkinsonianos/genética , Quelantes/uso terapêutico , Criança , Pré-Escolar , Distúrbios Distônicos/tratamento farmacológico , Distúrbios Distônicos/patologia , Feminino , Humanos , Masculino , Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Erros Inatos do Metabolismo dos Metais/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA