Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 782: 146841, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848861

RESUMO

Naturally-ignited wildfires are increasing in frequency and severity in northern regions, contributing to rapid permafrost thaw-induced landscape change driven by climate warming. Low-severity wildfires typically result in minor organic matter loss. The impacts of such fires on the hydrological and geochemical dynamics of peat plateau-wetland complexes have not been examined. In 2014, a low-severity wildfire, with minimal ground surface damage, burned approximately one-half of a 5 ha permafrost plateau in the wetland-dominated landscape of the Scotty Creek watershed, Northwest Territories, Canada, in the discontinuous permafrost zone. In March 2016, hydrometeorological and permafrost conditions on the burned and unaffected plateaus were monitored including snowpack characteristics and surface energy dynamics. Pore water samples were collected from the saturated layer as thaw progressed throughout the growing season on the burned and unaffected plateaus. Repeated probing of the frost table depth was coupled with laboratory analyses of peat physical and hydraulic characteristics performed on peat cores collected from the top 20 cm of the ground surface in the burned and unaffected plots. The higher transmissivity of the burned forest canopy accelerated snowmelt promoting earlier onset of the thawing season and increased the ground heat flux to melt ground ice. Wildfire increased the thickness of the supra-permafrost layer, including the active layer and talik, resulting in a more uniform subsurface with limited depressional storage capacity and reduced preferential runoff flowpaths across the burned plateau. The incorporation of ash and char into the peat matrix reduced pore diameters, promoting greater subsurface soil moisture retention and longer pore water residence times ultimately providing greater opportunity for soil-water interaction and biogeochemical reactions. Consequently, pore water showed elevated dissolved solutes, dissolved organic matter and mercury concentrations in the burned site. Low-severity wildfires have the potential to trigger a series of complex, inter-related hydrological, thermal and biogeochemical processes and feedbacks.

2.
Sci Total Environ ; 682: 611-622, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129544

RESUMO

Climate change is expected to alter the hydrology and vascular plant communities in peatland ecosystems. These changes may have as yet unexplored impacts on peat mercury (Hg) concentrations and net methylmercury (MeHg) production. In this study, peat was collected from PEATcosm, an outdoor, controlled mesocosm experiment where peatland water table regimes and vascular plant functional groups were manipulated over several years to simulate potential climate change effects. Potential Hg(II) methylation and MeHg demethylation rate constants were assessed using enriched stable isotope incubations at the end of the study in 2015, and ambient peat total Hg (THg) and MeHg concentration depth profiles were tracked annually from 2011 to 2014. Peat THg and MeHg concentrations and the proportion of THg methylated (%MeHg) increased significantly within the zone of water table fluctuation when water tables were lowered, but potential Hg(II) methylation rate constants were similar regardless of water table treatment. When sedges dominate over ericaceous shrubs, MeHg concentrations and %MeHg became significantly elevated within the sedge rooting zone. Increased desorption of Hg(II) and MeHg from the solid phase peat into pore water occurred with a lowered water table and predominant sedge cover, likely due to greater aerobic peat decomposition. Deeper, more variable water tables and a transition to sedge-dominated communities coincided with increased MeHg accumulation within the zone of water table fluctuation. Sustained high water tables promoted the net downward migration of Hg(II) and MeHg. The simultaneous decrease in Hg(II) and MeHg concentrations in the near-surface peat and accumulation deeper in the peat profile, combined with the trends in Hg(II) and MeHg partitioning to mobile pore waters, suggest that changes to peatland hydrology and vascular plant functional groups redistribute peat Hg(II) and MeHg via vertical hydrochemical transport mechanisms.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Ecossistema , Solo , Traqueófitas
3.
J Environ Monit ; 14(8): 2083-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22739974

RESUMO

Spring snowmelt is an important period of mercury (Hg) export from watersheds. Limited research has investigated the potential effects of climate variability on hydrologic and Hg fluxes during spring snowmelt. The purpose of this research was to assess the potential impacts of inter-annual climate variability on Hg mobility in forested uplands, as well as spatial variability in hillslope hydrology and Hg fluxes. We compared hydrological flows, Hg and solute mobility from three adjacent hillslopes in the S7 watershed of the Marcell Experimental Forest, Minnesota during two very different spring snowmelt periods: one following a winter (2009-2010) with severely diminished snow accumulation (snow water equivalent (SWE) = 48 mm) with an early melt, and a second (2010-2011) with significantly greater winter snow accumulation (SWE = 98 mm) with average to late melt timing. Observed inter-annual differences in total Hg (THg) and dissolved organic carbon (DOC) yields were predominantly flow-driven, as the proportion by which solute yields increased was the same as the increase in runoff. Accounting for inter-annual differences in flow, there was no significant difference in THg and DOC export between the two snowmelt periods. The spring 2010 snowmelt highlighted the important contribution of melting soil frost in the timing of a considerable portion of THg exported from the hillslope, accounting for nearly 30% of the THg mobilized. Differences in slope morphology and soil depths to the confining till layer were important in controlling the large observed spatial variability in hydrological flowpaths, transmissivity feedback responses, and Hg flux trends across the adjacent hillslopes.


Assuntos
Mercúrio/análise , Neve/química , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Monitoramento Ambiental , Minnesota , Modelos Químicos , Estações do Ano , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA