RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0096053.].
RESUMO
Receptor tyrosine kinases MET and epidermal growth factor receptor (EGFR) are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also participate in the early part of the process. Regeneration employs effective redundancy schemes to compensate for the missing signals. Elimination of any single extracellular signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling (MET knockout + EGFR-inhibited mice) abolishes liver regeneration, prevents restoration of liver mass, and leads to liver decompensation. MET knockout or simply EGFR-inhibited mice had distinct and signaling-specific alterations in Ser/Thr phosphorylation of mammalian target of rapamycin, AKT, extracellular signal-regulated kinases 1/2, phosphatase and tensin homolog, adenosine monophosphate-activated protein kinase α, etc. In the combined MET and EGFR signaling elimination of MET knockout + EGFR-inhibited mice, however, alterations dependent on either MET or EGFR combined to create shutdown of many programs vital to hepatocytes. These included decrease in expression of enzymes related to fatty acid metabolism, urea cycle, cell replication, and mitochondrial functions and increase in expression of glycolysis enzymes. There was, however, increased expression of genes of plasma proteins. Hepatocyte average volume decreased to 35% of control, with a proportional decrease in the dimensions of the hepatic lobules. Mice died at 15-18 days after hepatectomy with ascites, increased plasma ammonia, and very small livers. CONCLUSION: MET and EGFR separately control many nonoverlapping signaling endpoints, allowing for compensation when only one of the signals is blocked, though the combined elimination of the signals is not tolerated; the results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation. (Hepatology 2016;64:1711-1724).
Assuntos
Receptores ErbB/fisiologia , Falência Hepática/etiologia , Regeneração Hepática/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Animais , Masculino , Camundongos , Transdução de SinaisRESUMO
Exogenous interleukin 6 (IL-6), synthesized at the initiation of the acute phase response, is considered responsible for signaling hepatocytes to produce acute phase proteins. It is widely posited that IL-6 is either delivered to the liver in an endocrine fashion from immune cells at the site of injury, or alternatively, in a paracrine manner by hepatic immune cells within the liver. A recent publication showed there was a muted IL-6 response in lipopolysaccharide (LPS)-injured mice when nuclear NFκB was specifically inactivated in the hepatocytes. This indicates hepatocellular signaling is also involved in regulating the acute phase production of IL-6. Herein, we present extensive in vitro and in vivo evidence that normal hepatocytes are directly induced to synthesize IL-6 mRNAs and protein by challenge with LPS, a bacterial hepatotoxin, and by HGF, an important regulator of hepatic homeostasis. As the IL-6 receptor is found on the hepatocyte, these results reveal that induction of the acute phase response can be regulated in an autocrine as well as endocrine/paracrine fashion. Further, herein we provide data indicating that following partial hepatectomy (PHx), HGF differentially regulates IL-6 production in hepatocytes (induces) versus immune cells (suppresses), signifying disparate regulation of the cell sources involved in IL-6 production is a biologically relevant mechanism that has previously been overlooked. These findings have wide ranging ramifications regarding how we currently interpret a variety of in vivo and in vitro biological models involving elements of IL-6 signaling and the hepatic acute phase response.
Assuntos
Hepatócitos/metabolismo , Interleucina-6/biossíntese , Animais , Comunicação Autócrina , Células Cultivadas , Meios de Cultura Livres de Soro , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344RESUMO
Particularly interesting new cysteine-histidine-rich protein (PINCH) protein is part of the ternary complex known as the IPP (integrin linked kinase (ILK)-PINCH-Parvin-α) complex. PINCH itself binds to ILK and to another protein known as Rsu-1 (Ras suppressor 1). We generated PINCH 1 and PINCH 2 Double knockout mice (referred as PINCH DKO mice). PINCH2 elimination was systemic whereas PINCH1 elimination was targeted to hepatocytes. The genetically modified mice were born normal. The mice were sacrificed at different ages after birth. Soon after birth, they developed abnormal hepatic histology characterized by disorderly hepatic plates, increased proliferation of hepatocytes and biliary cells and increased deposition of extracellular matrix. After a sustained and prolonged proliferation of all epithelial components, proliferation subsided and final liver weight by the end of 30 weeks in livers with PINCH DKO deficient hepatocytes was 40% larger than the control mice. The livers of the PINCH DKO mice were also very stiff due to increased ECM deposition throughout the liver, with no observed nodularity. Mice developed liver cancer by one year. These mice regenerated normally when subjected to 70% partial hepatectomy and did not show any termination defect. Ras suppressor 1 (Rsu-1) protein, the binding partner of PINCH is frequently deleted in human liver cancers. Rsu-1 expression is dramatically decreased in PINCH DKO mouse livers. Increased expression of Rsu-1 suppressed cell proliferation and migration in HCC cell lines. These changes were brought about not by affecting activation of Ras (as its name suggests) but by suppression of Ras downstream signaling via RhoGTPase proteins. In conclusion, our studies suggest that removal of PINCH results in enlargement of liver and tumorigenesis. Decreased levels of Rsu-1, a partner for PINCH and a protein often deleted in human liver cancer, may play an important role in the development of the observed phenotype.