Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945773

RESUMO

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Recidiva Local de Neoplasia , Imunoterapia Adotiva , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Anticorpos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
3.
Nucleic Acids Res ; 50(16): 9568-9579, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018798

RESUMO

Plasmids of the ColE1 family are among the most frequently used in molecular biology. They were adopted early for many biotechnology applications, and as models to study plasmid biology. Their mechanism of replication is well understood, involving specific interactions between a plasmid encoded sense-antisense gene pair (RNAI and RNAII). Due to such mechanism, two plasmids with the same origin cannot be stably maintained in cells-a process known as incompatibility. While mutations in RNAI and RNAII can make colE1 more compatible, there has been no systematic effort to engineer new compatible colE1 origins, which could bypass technical design constraints for multi-plasmid applications. Here, we show that by diversifying loop regions in RNAI (and RNAII), it is possible to select new viable colE1 origins compatible with the wild-type one. We demonstrate that sequence divergence is not sufficient to enable compatibility and pairwise interactions are not an accurate guide for higher order interactions. We identify potential principles to engineer plasmid copy number independently from other regulatory strategies and we propose plasmid compatibility as a tractable model to study biological orthogonality.


Assuntos
Replicação do DNA , RNA Bacteriano , RNA Bacteriano/genética , Replicação do DNA/genética , Escherichia coli/genética , Sequência de Bases , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA