Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36079608

RESUMO

The aim of this work was the determination of Pelargonium graveolens (aerial parts) volatile compounds at three developmental stages and the evaluation of their antioxidant, antidiabetic, dermaprotective, anti-inflammatory, and antibacterial effects. The aerial parts of Pelargonium graveolens were collected at three stages, namely the vegetative, beginning, and full flowering. Pelargonium graveolens essential oils were extracted from the dried materials of these aerial parts by hydrodistillation. The volatiles were analyzed by Gas Chromatography-Mass Spectrometry GC-MS, and the antioxidant activity was assessed by DPPH, ABTS, H2O2, and FRAP assays. The in vitro antidiabetic effect was evaluated by the inhibition of α-amylase, α-glucosidase, and lipase enzymes, while the antibacterial activity was assessed against six bacterial strains using an agar well diffusion assay and a microdilution method. The main constituents were menthol, menthene, eremophilene, isoborneol, isogeraniol, α-pinene, linalyl acetate, and 3-carene, with quantitative differences at the three phenological stages. The essential oil at the full flowering stage showed the best antioxidant activity, with IC50 values of 83.26 ± 0.01, 116.42 ± 0.07, 132.25 ± 0.11, and 48.67 ± 0.04 µg/mL for DPPH, FRAP, ABTS, and H2O2 assays, respectively. This oil also exhibited significant effects against α-amylase (IC50 = 43.33 ± 0.01 µg/mL), α-glucosidase (IC50 = 19.04 ± 0.01 µg/mL), lipase (IC50 = 24.33 ± 0.05 µg/mL), 5-lipoxygenase (IC50 = 39.31 ± 0.01 µg/mL), and tyrosinase (IC50 = 124.49 ± 0.07 µg/mL). The essential oil extracted at the full flowering stage showed the best antibacterial effect against a panel of microorganisms with diameter inhibition zones ranging between 11.00 ± 0.17 mm and 17.30 ± 0.17 mm and MIC values from 0.25% to 2% v/v. Overall, the results presented here suggest that the full flowering stage is the best optimal harvest time of Pelargonium graveolens for food and pharmaceutical applications.

2.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014393

RESUMO

Salvia officinalis is a medicinal plant used to treat some diseases, including microbial infections and diabetes. Different studies showed the biological and pharmacological properties of this species. The aim of this study was the determination of the chemical compounds of S. officinalis essential oils and the investigation of their antimicrobial, antioxidant, antidiabetic, and anti-inflammatory properties. The chemical compounds of S. officinalis were determined by GC-MS analysis. The antioxidant activity was assessed by DPPH, ABTS, H2O2, and FRAP assays. The in vitro antidiabetic effect was evaluated by the inhibition of α-amylase, α-glucosidase, and lipase activities, and the anti-inflammatory effect was evaluated using the 5-lipoxygenase assay. Moreover, antibacterial activity was assessed against six bacterial strains using agar well diffusion assay and microdilution method. The main compounds in essential oils of S. officinalis at three phenological stages were naphthalenone, camphor, 1.8-cineole, and α-thujone. The full flowering stage essential oil showed the best antioxidant activity with different IC50 values according to the used tests. This oil also exhibited important inhibitory effects at the full flowering stage against α-amylase (IC50 = 69.23 ± 0.1 µg/mL), α-glucosidase (IC50 = 22.24 ± 0.07 µg/mL), and lipase (IC50 = 37.3 ± 0.03 µg/mL). The 5-lipoxygenase inhibitory effect was the best at the full flowering stage (IC50 = 9.24 ± 0.03 µg/mL). The results of the antibacterial evaluation revealed that, at three seasonal periods, S. officinalis essential oil demonstrated strong antibacterial activity. Although the full flowering stage had the best antibacterial activity, there were no significant differences between the three stages. Additionally, the essential oils showed bactericidal effects on Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis, Proteus mirabilis, Escherichia coli, and Salmonella typhimurium, respectively. The findings of this work showed remarkably that S. officinalis synthesizes essential oils according to different developmental stages. Moreover, it has exhibited interesting biological and pharmacological properties justifying its medicinal effects and suggesting it as a very important source of natural drugs.


Assuntos
Óleos Voláteis , Salvia officinalis , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Araquidonato 5-Lipoxigenase , Escherichia coli , Peróxido de Hidrogênio/farmacologia , Hipoglicemiantes/farmacologia , Lipase , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Salvia officinalis/química , alfa-Amilases , alfa-Glucosidases/farmacologia
3.
Front Microbiol ; 13: 881442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694314

RESUMO

The improvement of plant growth and yield becomes crucial to feed the rising world population, especially in harsh conditions, drought, salt stress, lack of nutrition, and many other challenges. To cope with these stresses, plants developed an adaptation strategy (mycorrhiza), which is an efficient way to reinforce their growth and resistance. For this purpose, we studied the influence of mycorrhizal fungi isolated from a natural rock phosphate mine in the vicinity of some native plants and agricultural soil to assess their capacity in increasing the growth, nutritional profile improvement, and biochemical parameters in the inoculated wheat plants. Results showed a high diversity of isolated arbuscular mycorrhizal fungi (AMF) spores in the agricultural soil, and less diversity in the natural phosphate samples, where three main genera were identified: glomus, gigaspora, and acaulospora. The chlorophyll content increased by 116% in the native inoculum (NM) flowed by Glomus sp2 from agricultural soil (98%) compared to non-mycorrhized plants, which significantly impact the growth and plant biomass (an increase of 90 and 73%, respectively). The same rate of change was shown on total phenolic compounds with an increase of 64% in the plants inoculated with Glomus sp2 in the presence of TSP, compared to the non-mycorrhized plants. In conclusion, the inoculation of wheat plants with AMF spores improved plants' growth via the increase in the density of the root system, which implies better assimilation of nutrients, especially in mycorrhizal plants with phosphorus fertilization regime, triple superphosphate (TSP) or natural rock phosphate (RP). This improvement of the physiological and biochemical parameters (chlorophyll contents and phenolic compound) of the treated plants reflected the positive impact of AMF, especially those originating from RP. AMF in phosphate mine could be an important source of inoculum to improve plant nutrient efficiency with the direct use of RP as fertilizer.

4.
Front Plant Sci ; 12: 700273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408761

RESUMO

Seed priming has been for a long time an efficient application method of biofertilizers and biocontrol agents. Due to the quick degradation of the priming agents, this technique has been limited to specific immediate uses. With the increase of awareness of the importance of sustainable use of biofertilizers, seed coating has presented a competitive advantage regarding its ability to adhere easily to the seed, preserve the inoculant, and decompose in the soil. This study compared primed Phaseolus vulgaris seeds with Rhizobium tropici and trehalose with coated seeds using a silk solution mixed with R. tropici and trehalose. We represented the effect of priming and seed coating on seed germination and the development of seedlings by evaluating physiological and morphological parameters under different salinity levels (0, 20, 50, and 75 mM). Results showed that germination and morphological parameters have been significantly enhanced by applying R. tropici and trehalose. Seedlings of coated seeds show higher root density than the freshly primed seeds and the control. The physiological response has been evaluated through the stomatal conductance, the chlorophyll content, and the total phenolic compounds. The stability of these physiological traits indicated the role of trehalose in the protection of the photosystems of the plant under low and medium salinity levels. R. tropici and trehalose helped the plant mitigate the negative impact of salt stress on all traits. These findings represent an essential contribution to our understanding of stress responses in coated and primed seeds. This knowledge is essential to the design of coating materials optimized for stressed environments. However, further progress in this area of research must anticipate the development of coatings adapted to different stresses using micro and macro elements, bacteria, and fungi with a significant focus on biopolymers for sustainable agriculture and soil microbiome preservation.

5.
Curr Microbiol ; 77(9): 2391-2404, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32468184

RESUMO

This work aimed to assess the ability of plant growth-promoting Bacilli isolated from wheat rhizosphere and rock phosphate mine soils to convert inorganic phosphate (Pi) from Moroccan natural phosphate (NP) to soluble forms. The effect of these bacteria on wheat plants in order to increase their phosphorus (P) uptake in vitro was also investigated. Bacteria were isolated from wheat rhizosphere and natural rock phosphate soils and screened for their ability to solubilize Tri-Calcium Phosphate (TCP) and Natural Rock Phosphate (NP), to produce indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Isolates were identified by 16S rRNA sequencing and tested for their capacity to increase wheat plants growth and their phosphorus uptake.Twenty-four strains belonging to Bacillus genus isolated from both biotopes were screened for their ability to solubilize Pi. The highest NP solubilization was showed by strains isolated from wheat rhizosphere. Solubilization of Pi was accompanied by organic acid production. Strains produce IAA, siderophore and ACC deaminase. Inoculation assays using efficient NP-solubilizing bacilli strains from both sources showed the ability of these isolates to increase wheat growth and the phosphorus uptake under in vitro conditions. Bacilli strains isolated from rhizosphere soil and natural rock phosphorus soil showed effective solubilization of Pi from rock phosphate. Phosphate solubilizing Bacilli were evaluated for their plant growth promotion under in vitro conditions. Results revealed the positive effect of all strains on biometric parameters and P content of wheat seedlings.


Assuntos
Bacillus , Rizosfera , Bacillus/genética , Fosfatos , Fósforo , Raízes de Plantas , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Triticum
6.
Springerplus ; 5(1): 739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27376007

RESUMO

During the extraction, a portion of oil remains trapped inside the cells and its release requires the degradation of the walls and cell membranes, especially when the fruits have not reached a maximum maturity which is likely to cause an optimal embrittlement of the parietal structures and cell membrane. This can be done by specific enzymes necessary for the degradation of various cellular barriers. Three different enzyme treatments proteolytic, pectolytic or both are applied on the Moroccan Picholine olives from veraison to maturity of the fruit. The effect of these treatments is evaluated by olive oil diffusion, its phenolic content (PC) and cellular embrittlement determination of olives during ripening. The pectolytic activities lead to a significant increase in both the oil extractability (76 % at veraison and 14 % at maturity) and the PC (up to 50 % of gain compared to the control at veraison and 27 % at maturity). The proteolytic activities applied alone have no significant effect on the extractability and the polyphenols levels of oils. Furthermore, when these proteolytic activities are added in combination with the pectolytic activities, the oil extractability is doubled at veraison and its flowing up to 99 % at maturity that barely 84 % in the control in addition to a richness of polyphenols which can reach 84 % more compared to the control. This increase in polyphenols wealth is probably due to the degradation of cell walls, cellular and vacuolar membranes by enzyme activities releasing PCs that were previously associated with these structures in the drupe.

7.
Springerplus ; 3: 321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045609

RESUMO

Basil (O. gratissimum L) is a aromatic and medicinal plant widely used in traditional medicine in Morocco. The aim of this work was to study the effect of three plant growth regulators gibberellic acid (GA), indole 3-acetic acid (IAA) and benzylaminopurine (BAP) on the content and composition of essential oils of this plant, especially on the main compound (methyl chavicol) and its isomer (the trans-anethole). The results showed a wide variation on yield, content and range of the molecule constituent of oil, with a balance of appearances and/or disappearances of a few molecules. GA caused a slight decrease in the oil yield (0.2%), but it increased the diversity of compounds (17 molecules) with the appearance of four new compounds (naphthalene, camphor, germacrene-D, and ledene) and disappearance of (ß cedrene, azulene). This variation also caused a very important decrease in the main compound (methyl chavicol) and increases its isomer (trans-anethole). IAA and BAP caused an increase in the yield of essential oil (0.30% and 0.32% respectively) without much influence on the main compounds, but with some change in the composition such as the appearance of (germacrene-D) and the disappearance of (aristolene).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA