Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474183

RESUMO

Colletotrichum gloeosporioides is widely distributed and causes anthracnose on many crops, resulting in serious economic losses. Common fungal extracellular membrane (CFEM) domain proteins have been implicated in virulence and their interaction with the host plant, but their roles in C. gloeosporioides are still unknown. In this study, a CFEM-containing protein of C. gloeosporioides was identified and named as CgCFEM1. The expression levels of CgCFEM1 were found to be markedly higher in appressoria, and this elevated expression was particularly pronounced during the initial stages of infection in the rubber tree. Absence of CgCFEM1 resulted in impaired pathogenicity, accompanied by notable perturbations in spore morphogenesis, conidiation, appressorium development and primary invasion. During the process of appressorium development, the absence of CgCFEM1 enhanced the mitotic activity in both conidia and germ tubes, as well as compromised conidia autophagy. Rapamycin was found to basically restore the appressorium formation, and the activity of target of rapamycin (TOR) kinase was significantly induced in the CgCFEM1 knockout mutant (∆CgCFEM1). Furthermore, CgCFEM1 was proved to suppress chitin-triggered reactive oxygen species (ROS) accumulation and change the expression patterns of defense-related genes. Collectively, we identified a fungal effector CgCFEM1 that contributed to pathogenicity by regulating TOR-mediated conidia and appressorium morphogenesis of C. gloeosporioides and inhibiting the defense responses of the rubber tree.


Assuntos
Colletotrichum , Proteínas Fúngicas , Virulência/genética , Proteínas Fúngicas/metabolismo , Sirolimo , Doenças das Plantas/microbiologia
7.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474190

RESUMO

Anthracnose, induced by Colletotrichum gloeosporioides, poses a substantial economic threat to rubber tree yields and various other tropical crops. Ede1, an endocytic scaffolding protein, plays a crucial role in endocytic site initiation and maturation in yeast. Metacaspases, sharing structural similarities with caspase family proteases, are essential for maintaining cell fitness. To enhance our understanding of the growth and virulence of C. gloeosporioides, we identified a homologue of Ede1 (CgEde1) in C. gloeosporioides. The knockout of CgEde1 led to impairments in vegetative growth, conidiation, and pathogenicity. Furthermore, we characterized a weakly interacted partner of CgEde1 and CgMca (orthologue of metacaspase). Notably, both the single mutant ΔCgMca and the double mutant ΔCgEde1/ΔCgMca exhibited severe defects in conidiation and germination. Polarity establishment and pathogenicity were also disrupted in these mutants. Moreover, a significantly insoluble protein accumulation was observed in ΔCgMca and ΔCgEde1/ΔCgMca strains. These findings elucidate the mechanism by which CgEde1 and CgMca regulates the growth and pathogenicity of C. gloeosporioides. Their regulation involves influencing conidiation, polarity establishment, and maintaining cell fitness, providing valuable insights into the intricate interplay between CgEde1 and CgMca in C. gloeosporioides.


Assuntos
Colletotrichum , Proteínas Fúngicas , Virulência , Proteínas Fúngicas/metabolismo , Doenças das Plantas
8.
Plant Physiol ; 193(4): 2768-2787, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37648267

RESUMO

The efficient infection of plants by the bacteria Xanthomonas campestris pv. campestris (Xcc) depends on its type III effectors (T3Es). Although the functions of AvrE family T3Es have been reported in some bacteria, the member XopAM in Xcc has not been studied. As XopAM has low sequence similarity to reported AvrE-T3Es and different reports have shown that these T3Es have different targets in hosts, we investigated the functions of XopAM in the Xcc-plant interaction. Deletion of xopAM from Xcc reduced its virulence in cruciferous crops but increased virulence in Arabidopsis (Arabidopsis thaliana) Col-0, indicating that XopAM may perform opposite functions depending on the host species. We further found that XopAM is a lipase that may target the cytomembrane and that this activity might be enhanced by its membrane-targeted protein XOPAM-ACTIVATED RESISTANCE 1 (AMAR1) in Arabidopsis Col-0. The binding of XopAM to AMAR1 induced an intense hypersensitive response that restricted Xcc proliferation. Our results showed that the roles of XopAM in Xcc infection are not the same as those of other AvrE-T3Es, indicating that the functions of this type of T3E have differentiated during long-term bacterium‒host interactions.


Assuntos
Arabidopsis , Xanthomonas campestris , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Virulência , Fatores de Virulência/metabolismo , Doenças das Plantas/microbiologia
9.
J Fungi (Basel) ; 9(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108926

RESUMO

Phytopathogenic fungi secretes a range of effectors to manipulate plant defenses. Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is a soil-borne pathogen that causes destructive banana wilt disease. Understanding the molecular mechanisms behind Foc TR4 effectors and their regulation of pathogenicity is helpful for developing disease control strategies. In the present study, we identified a novel effector, Fusarium special effector 1 (FSE1), in Foc TR4. We constructed FSE1 knock-out and overexpression mutants and investigated the functions of this effector. In vitro assays revealed that FSE1 was not required for vegetative growth and conidiation of Foc TR4. However, inoculation analysis of banana plantlets demonstrated that knock-out of FSE1 increased the disease index, while overexpression of FSE1 decreased it. Microscope analysis suggested that FSE1 was distributed in the cytoplasm and nuclei of plant cells. Furthermore, we identified an MYB transcription factor, MaEFM-like, as the target of FSE1, and the two proteins physically interacted in the nuclei of plant cells. In addition, Transient expression of MaEFM-like induced cell death in tobacco leaves. Our findings suggest that FSE1 is involved in the pathogenicity of Foc TR4 by targeting MaEFM-like.

10.
Front Microbiol ; 14: 1129101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876102

RESUMO

Fungal chitin, as a typical microorganism-associated molecular pattern (PAMP), was recognized by plant LysM-containing protein to induce immunity called pattern-triggered immunity (PTI). To successfully infect host plant, fungal pathogens secreted LysM-containing effectors to inhibit chitin-induced plant immunity. Filamentous fungus Colletotrichum gloeosporioides caused rubber tree anthracnose which resulted in serious loss of natural rubber production worldwide. However, little is known about the pathogenesis mediated by LysM effector of C. gloeosporioide. In this study, we identified a two LysM-containing effector in C. gloeosporioide and named as Cg2LysM. Cg2LysM was involved not only in conidiation, appressorium formation, invasion growth and the virulence to rubber tree, but also in melanin synthesis of C. gloeosporioides. Moreover, Cg2LysM showed chitin-binding activity and suppression of chitin-triggered immunity of rubber tree such as ROS production and the expression of defense relative genes HbPR1, HbPR5, HbNPR1 and HbPAD4. This work suggested that Cg2LysM effector facilitate infection of C. gloeosporioides to rubber tree through affecting invasive structure and inhibiting chitin-triggered plant immunity.

11.
J Pineal Res ; 74(3): e12861, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750349

RESUMO

Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.


Assuntos
Manihot , Melatonina , Melatonina/metabolismo , Histonas/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Resistência à Doença/genética , Epigênese Genética , Plantas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plant Cell Environ ; 46(2): 635-649, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451539

RESUMO

Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.


Assuntos
Manihot , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Histonas/metabolismo , Manihot/genética , Manihot/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Lisina/metabolismo , Acetilação
13.
Front Cell Infect Microbiol ; 12: 845133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782153

RESUMO

Multiunit-flavoenzyme NADPH oxidases (NOXs) play multiple roles in living cells via regulating signaling pathways. In several phytopathogenic fungi, NOXs are required for the polarized growth of hyphal tips and pathogenicity to host plants, but the possible mechanisms are still elusive. In our previous study, CgNOXA, CgNOXB, and CgNOXR were identified as components of the NOX complex in Colletotrichum gloeosporioides. The growth and the inoculation assays revealed that CgNOXA/B and CgNOXR regulate vegetative growth and are required for the full pathogenicity of C. gloeosporioides to Hevea leaves. We further demonstrated that the vital roles of CgNOXB and CgNOXR in appressorium formation and the development of invasion hyphae account for their functions in pathogenicity. Moreover, CgNOXB and CgNOXR regulate the production and distribution of ROS in hyphal tips and appressoria, control the specialized remodeling of F-actin in hyphal tips and appressoria, and are involved in fungal cell wall biosynthesis. Taken together, our findings highlight the role of NOXs in fungal pathogenicity through the organization of the actin cytoskeleton.


Assuntos
Actinas , Colletotrichum , NADPH Oxidases , Citoesqueleto de Actina/metabolismo , Colletotrichum/enzimologia , Colletotrichum/patogenicidade , NADPH Oxidases/metabolismo , Virulência
14.
FEMS Microbiol Lett ; 369(1)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35883214

RESUMO

Cyclic di-guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger, i.e. essential to bacterial adaptation to environments. Cellular c-di-GMP level is regulated by the diguanylate cyclases and the phosphodiesterases, and the signal transduction depends on its receptors. In Xanthomonas oryzae pv. oryzae strain PXO99A, 37 genes were predicted to encode GGDEF, EAL, GGDEF/EAL, HD-GYP, FleQ, MshE, PilZ, CuxR, Clp, and YajQ proteins that may be involved in c-di-GMP turnover or function as c-di-GMP receptors. Although the functions of some of these genes have been studied, but the rest have not been extensively studied. Here, we deleted these 37 genes from PXO99A and analyzed the virulence, motility, biofilm, and EPS production of these mutants. Our results show that most of these genes are required for PXO99A virulence, motility, biofilm formation, or exopolysaccharide production. Although some of them have been reported in previous studies, we found four novel genes (gedpX8, gdpX11, pliZX4, and yajQ) are implicated in X. oryzae pv. oryzae virulence. Our data demonstrate that c-di-GMP signaling is vital for X. oryzae pv. oryzae virulence and some virulence-related factors production, but there is no positive correlation between them in most cases. Taken together, our systematic research provides a new light to understand the c-di-GMP signaling network in X. oryzae pv. oryzae.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Oryza/microbiologia , Transdução de Sinais , Virulência
15.
Mol Plant Pathol ; 23(10): 1472-1486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35791045

RESUMO

Anthracnose caused by Colletotrichum gloeosporioides leads to serious economic loss to rubber tree yield and other tropical crops. The appressorium, a specialized dome-shaped infection structure, plays a crucial role in the pathogenesis of C. gloeosporioides. However, the mechanism of how actin cytoskeleton dynamics regulate appressorium formation and penetration remains poorly defined in C. gloeosporioides. In this study, an actin cross-linking protein fimbrin homologue (CgFim1) was identified in C. gloeosporioides, and the knockout of CgFim1 led to impairment in vegetative growth, conidiation, and pathogenicity. We then investigated the roles of CgFim1 in the dynamic organization of the actin cytoskeleton. We observed that actin patches and cables localized at the apical and subapical regions of the hyphal tip, and showed a disc-to-ring dynamic around the pore during appressorium development. CgFim1 showed a similar distribution pattern to the actin cytoskeleton. Moreover, knockout of CgFim1 affected the polarity of the actin cytoskeleton in the hyphal tip and disrupted the actin dynamics and ring structure formation in the appressorium, which prevented polar growth and appressorium development. The CgFim1 mutant also interfered with the septin structure formation. This caused defects in pore wall overlay formation, pore contraction, and the extension of the penetration peg. These results reveal the mechanism by which CgFim1 regulates the growth and pathogenicity of C. gloeosporioides by organizing the actin cytoskeleton.


Assuntos
Actinas , Colletotrichum , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Fúngicas/metabolismo , Glicoproteínas de Membrana , Proteínas dos Microfilamentos , Doenças das Plantas , Virulência
16.
Front Microbiol ; 13: 911479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770165

RESUMO

Fungi secrete numerous effectors to modulate host defense systems. Understanding the molecular mechanisms by which fungal effectors regulate plant defense is of great importance for the development of novel strategies for disease control. In this study, we identified necrosis- and ethylene-inducing protein 1 (Nep1)-like protein (NLP) effector gene, CgNLP1, which contributed to conidial germination, appressorium formation, invasive growth, and virulence of Colletotrichum gloeosporioides to the rubber tree. Transient expression of CgNLP1 in the leaves of Nicotiana benthamiana induced ethylene production in plants. Ectopic expression of CgNLP1 in Arabidopsis significantly enhanced the resistance to Botrytis cinerea and Alternaria brassicicola. An R2R3 type transcription factor HbMYB8-like of rubber tree was identified as the target of CgNLP1.HbMYB8-like, localized on the nucleus, and induced cell death in N. benthamiana. CgNLP1 disrupted nuclear accumulation of HbMYB8-like and suppressed HbMYB8-like induced cell death, which is mediated by the salicylic acid (SA) signal pathway. This study suggested a new strategy whereby C. gloeosporioides exploited the CgNLP1 effector to affect invasion and suppress a host defense regulator HbMYB8-like to facilitate infection.

17.
J Fungi (Basel) ; 8(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205929

RESUMO

Heat shock transcription factors (HSFs) are a family of transcription regulators. Although HSFs' functions in controlling the transcription of the molecular chaperone heat shock proteins and resistance to stresses are well established, their effects on the pathogenicity of plant pathogenic fungi remain unknown. In this study, we analyze the role of CgHSF1 in the pathogenicity of Colletotrichum gloeosporioides and investigate the underlying mechanism. Failure to generate the Cghsf1 knock-out mutant suggested that the gene is essential for the viability of the fungus. Then, genetic depletion of the Cghsf1 was achieved by inserting the repressive promoter of nitrite reductase gene (PniiA) before its coding sequence. The mutant showed significantly decrease in the pathogenicity repression of appressorium formation, and severe defects in melanin biosynthesis. Moreover, four melanin synthetic genes were identified as direct targets of CgHSF1. Taken together, this work highlights the role of CgHSF1 in fungal pathogenicity via the transcriptional activation of melanin biosynthesis. Our study extends the understanding of fungal HSF1 proteins, especially their involvement in pathogenicity.

18.
Tree Physiol ; 42(5): 1070-1083, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35022787

RESUMO

Calcium (Ca2+) signaling is one of the earliest factors to coordinate plant adaptive responses. As direct sensors and activators of Ca2+ signals, calcium-dependent protein kinases (CDPKs) were reported to be widely involved in regulating different biotic and abiotic stress stimuli. In this study, 32 Hevea brasiliensis CDPK (HbCDPK) genes were predicted and classified into four subgroups. Among them, the full-length coding sequences of 28 HbCDPK genes were confirmed by RT-PCR and verified by sequencing. Putative cis-elements assay in the promoters of HbCDPKs showed that most of the HbCDPK genes contained gibberellic acid-responsive element (GARE), abscisic acid-responsive element (ABRE), salicylic acid-responsive element (SARE), defense and stress responsive element (TC-rich repeats) and low-temperature response element (LTR), which could be activated by different biotic and abiotic stresses. Real-time PCR analysis indicated that 28 HbCDPK genes respond to infection of pathogenic fungi and a variety of phytohormones. Subcellular localization was observed with most HbCDPKs located in cell membrane, cytoplasm or organelles. Some HbCDPKs were confirmed to cause reactive oxygen species (ROS) production and accumulation in rubber tree mesophyll protoplast directly. HbCDPK5 was strongly induced by the inoculation with Colletotrichum gloeosporioides and was chosen for further analysis. HbCDPK5 localized to the cell membrane and cytoplasm, and obviously regulated the accumulation of ROS in rubber tree mesophyll protoplast. Overexpression of HbCDPK5 in Arabidopsis enhanced the resistance to Botrytis cinerea. These results indicate that rubber tree CDPK genes play important roles in plant disease resistance.


Assuntos
Arabidopsis , Hevea , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Hevea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Mol Plant Pathol ; 23(3): 355-369, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837306

RESUMO

Xanthomonas campestris pv. campestris (Xcc) can cause black rot in cruciferous plants worldwide. Two-component systems (TCSs) are key for bacterial adaptation to various environments, including hosts. VemR is a TCS response regulator and crucial for Xcc motility and virulence. Here, we report that RavA is the cognate histidine kinase (HK) of VemR and elucidate the signalling pathway by which VemR regulates Xcc motility and virulence. Genetic analysis showed that VemR is epistatic to RavA. Using bacterial two-hybrid experiments and pull-down and phosphorylation assays, we found that RavA can interact with and phosphorylate VemR, suggesting that RavA is the cognate HK of VemR. In addition, we found that RpoN2 and FleQ are epistatic to VemR in regulating bacterial motility and virulence. In vivo and in vitro experiments demonstrated that VemR interacts with FleQ but not with RpoN2. RavA/VemR regulates the expression of the flagellin-encoding gene fliC by activating the transcription of the rpoN2-vemR-fleQ and flhF-fleN-fliA operons. In summary, our data show that the RavA/VemR TCS regulates FleQ activity and thus influences the expression of motility-related genes, thereby affecting Xcc motility and virulence. The identification of this novel signalling pathway will deepen our understanding of Xcc-plant interactions.


Assuntos
Xanthomonas campestris , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fosforilação , Virulência/genética
20.
Res Microbiol ; 173(3): 103902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34838989

RESUMO

Chromatin structure modifications by histone acetyltransferase are involved in multiple biological processes in eukaryotes. In the present study, the GCN5 homologue FocGCN5 was identified in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). The coding gene was then knocked out to investigate the roles of FocGNC5. The mutant ΔFocGCN5 was found significantly reduced in growth rate and conidiation, and almost completely lost pathogenicity to banana plantlets. The RNA-seq analysis provide an insight into the underlying mechanism. Firstly, transcription of the genes involved in carbohydrate metabolism and fungal cell wall synthesis was reduced in ΔFocGCN5, leading to the impairment of apical deposition of cell-wall material. Secondly, FocabaA, one of the pivotal regulators of conidiation, was significantly reduced in expression in ΔFocGCN5, which might be the main cause of the conidiation reduction. Thirdly, the pathogenicity-associated factors, including effectors and plant cell wall degrading enzymes, were almost all down-regulated in ΔFocGCN5, which accounts for the decrease of pathogenicity. In addition, the stress tolerance to salt, heat, and cell wall inhibitors was slightly increased in ΔFocGCN5. Taken together, our studies clarify the roles of FocGCN5 in growth, conidiation, and pathogenicity of Foc TR4, and explore the possible mechanism behind its biological functions.


Assuntos
Fenômenos Biológicos , Fusarium , Musa , Fusarium/genética , Fusarium/metabolismo , Histona Acetiltransferases/genética , Musa/metabolismo , Musa/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA