Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 142: 193-203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527884

RESUMO

Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Peixe-Zebra/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Compostos de Fenilureia/farmacologia , Reprodução , Poluentes Químicos da Água/metabolismo
2.
Environ Pollut ; 347: 123723, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452838

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, with an incidence of 5-10%. This study compared the traits of zebrafish with three diagnostic criteria for human PCOS, and the diagnostic criteria for zebrafish PCOS were proposed: decreased fecundity, elevated testosterone (T) or 11-ketotestosterone (11-KT) levels and increased cortical-alveolar oocyte (CO) ratio, enhancing the zebrafish PCOS model's accuracy. According to the mammalian PCOS classification, the type of zebrafsh PCOS is divided into four phenotypes (A, B, C and D), but the four phenotypes of zebrafish PCOS are not fully covered in the existing studies (A and D). In this study, we successfully induced phenotype B zebrafish PCOS model using the aromatase inhibitor, letrozole (LET). That is, wild-type female zebrafish were exposed to 1000 µg/L LET for 30 days. Reproductive tests showed decreased fecundity in female zebrafish exposed to LET (Control: 132.63, 146.00, 173.00; LET: 29.20, 90.00, 82.71). Hormone analysis showed that female zebrafish exposed to LET had significantly lower 17ß-estradiol/testosterone (E2/T) ratios, indicating elevated T levels. Meanwhile, levels of 11-KT in the ovaries exposed to LET were significantly up-regulated (Control: 0.0076 pg/µg; LET: 0.0138 pg/µg). Pathological sections of the ovary showed fewer CO in the LET-exposed group (Control: 16.27%; LET: 8.38%). In summary, the zebrafish PCOS model summarized and studied in this study provide a reliable and economical tool for the screening of therapeutic drugs, as well as for the etiology research and treatment strategies of PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Letrozol/toxicidade , Letrozol/uso terapêutico , Síndrome do Ovário Policístico/induzido quimicamente , Peixe-Zebra , Eixo Hipotalâmico-Hipofisário-Gonadal , Estradiol/toxicidade , Testosterona , Mamíferos
4.
Sci Total Environ ; 908: 168420, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963533

RESUMO

Edema represents a notable outcome in fishes exposed to aquatic pollutants, yet the underlying etiology remains inadequately understood. This investigation delves into the etiological factors of edema formation in 7 days post fertilization (dpf) zebrafish larvae following their exposure to InP/ZnS quantum dots (QDs), which was chosen as a prototypical edema inducer. Given the fundamental role of the kidney in osmoregulation, we used transgenic zebrafish lines featuring fluorescent protein labeling of the glomerulus, renal tubule, and blood vessels, in conjunction with histopathological scrutiny. We identified the pronounced morphological and structural aberrations within the pronephros. By means of tissue mass spectrometry imaging and hyperspectral microscopy, we discerned the accumulation of InP/ZnS QDs in the pronephros. Moreover, InP/ZnS QDs impeded the renal clearance capacity of the pronephros, as substantiated by diminished uptake of FITC-dextran. InP/ZnS QDs also disturbed the expression levels of marker genes associated with kidney development and osmoregulatory function at the earlier time points, which preceded the onset of edema. These results suggest that impaired fluid clearance most likely resulting from pronephros injury contributes to the emergence of zebrafish edema. Briefly, our study provides a perspective: the kidney developmental injury induced by exogenous substances may regulate edema in a zebrafish model.


Assuntos
Pontos Quânticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Larva , Glomérulos Renais
5.
Ecotoxicol Environ Saf ; 266: 115574, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839186

RESUMO

Pyrrolizidine alkaloids (PAs) are a class of phytotoxins that are widely distributed and can be consumed by humans through their daily diets. Echimidine is one of the most abundant PAs, but its safety, particularly its effects on development, is not fully understood. In this study, we used a zebrafish model to assess the developmental toxicity of echimidine. Zebrafish embryos were exposed to echimidine at concentrations of 0.02, 0.2, and 2 mg/L for 96 h. Our study revealed that embryonic exposure to echimidine led to developmental toxicity, characterized by delayed hatching and reduced body length. Additionally, echimidine exposure had a notable impact on heart development in larvae, causing tachycardia and reducing stroke volume (SV)and cardiac output (CO). Upon exposing the transgenic zebrafish strain Tg(cmlc2:EGFP) to echimidine, we observed atrial dilation and thinning of the atrial wall in developing embryos. Moreover, our findings indicated abnormal expression of genes associated with cardiac development (including gata4, tbx5, nkx2.5 and myh6) and genes involved in calcium signaling pathways (such as cacna1aa, cacna1sa, ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a1, slc8a3 and slc8a4a). In summary, our findings demonstrate that echimidine may impair cardiac development and function in zebrafish larvae by disrupting calcium transport, leading to developmental toxicity. These findings provide insights regarding the safety of products containing PAs in food and medicine.


Assuntos
Fibrilação Atrial , Alcaloides de Pirrolizidina , Animais , Humanos , Peixe-Zebra/metabolismo , Larva , Alcaloides de Pirrolizidina/metabolismo , Embrião não Mamífero/metabolismo
6.
Food Chem Toxicol ; 182: 114155, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898232

RESUMO

Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 µM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 µM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 µM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 µM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Peixe-Zebra , Larva , Hormônios Tireóideos , Glândula Tireoide , Poluentes Químicos da Água/toxicidade , Disruptores Endócrinos/toxicidade
7.
Discov Nano ; 18(1): 101, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581715

RESUMO

Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.

8.
Environ Sci Technol ; 57(28): 10201-10210, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37406193

RESUMO

This study aimed to investigate the transgenerational effects of tributyltin exposure on rat neurodevelopment in male offspring and the potential mechanisms. Neonatal female rats were exposed to the environmental level of tributyltin and then mated with nonexposed males after sexual maturity to produce the F1 generation. The F1 generation (with primordial germ cell exposure) was mated with nonexposed males to produce nonexposed offspring (the F2 and F3 generations). Neurodevelopmental indicators and behavior were observed for the F1, F2, and F3 generations during postnatal days 1-25 and 35-56, respectively. We found premature eye-opening and delayed visual positioning in newborn F1 rats and anxiety and cognitive deficits in prepubertal F1 male rats. These neurodevelopmental impacts were also observed in F2 and F3 males. Additionally, F1-F3 males exhibited increased serotonin and dopamine levels and a loose arrangement of neurons in the hippocampus. We also observed a reduction in the expression of genes involved in intercellular adhesion and increased DNA methylation of the Dsc3 promoter in F1-F3 males. We concluded that tributyltin exposure led to transgenerational effects on neurodevelopment via epigenetic reprogramming in male offspring. These findings provide insights into the risks of neurodevelopmental disorders in offspring from parents exposed to tributyltin.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Compostos de Trialquitina , Ratos , Animais , Masculino , Feminino , Humanos , Reprodução , Metilação de DNA , Compostos de Trialquitina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/psicologia , Epigênese Genética
10.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270882

RESUMO

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Assuntos
Hiperuricemia , Nefropatias , Adulto , Humanos , Masculino , Feminino , Camundongos , Animais , Ácido Úrico , Estradiol , Rim/metabolismo
11.
Ecotoxicol Environ Saf ; 256: 114899, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060801

RESUMO

Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-ß/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Camundongos , Humanos , Animais , Extratos Vegetais/farmacologia , Fígado , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Chá
12.
J Exp Bot ; 74(14): 4189-4207, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086216

RESUMO

Apple necrotic mosaic virus (ApNMV) is associated with apple mosaic disease in China. However, the mechanisms of ApNMV infection, as well as host defence against the virus, are still poorly understood. Mitochondrial ATP synthase plays a fundamental role in the regulation of plant growth and development. However, mitochondrial ATP synthase function in response to virus infection remains to be defined. In the present study, a yeast two-hybrid (Y2H) screening revealed that the apple mitochondrial ATP synthase oligomycin sensitivity-conferring protein (OSCP) subunit (MdATPO) interacts with ApNMV coat protein (CP). It was further verified that overexpression of MdATPO in Nicotiana benthamiana inhibited viral accumulation. In contrast, silencing of NbATPO facilitated viral accumulation, indicating that ATPO plays a defensive role during ApNMV infection. Further investigation demonstrated that ApNMV infection accelerated abscisic acid (ABA) accumulation, and ABA negatively regulated ATPO transcription, which was related to the ability of ABA insensitive 5 (ABI5) to bind to the ABA-responsive elements (ABREs) of the ATPO promoter. Taken together, our results indicated that transcription factor ABI5 negatively regulated ATPO transcription by directly binding to its promoter, leading to the susceptibility of apple and N. benthamiana to ApNMV infection. The current study facilitates a comprehensive understanding of the intricate responses of the host to ApNMV infection.


Assuntos
Proteínas de Arabidopsis , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Regulação para Baixo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
Environ Sci Pollut Res Int ; 30(20): 58944-58955, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002518

RESUMO

Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.


Assuntos
Praguicidas , Animais , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/metabolismo , Praguicidas/toxicidade , Praguicidas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Peixe-Zebra
14.
J Gen Virol ; 104(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802334

RESUMO

The coat protein (CP) of plant viruses generally has multiple functions involving infection, replication, movement and pathogenicity. Functions of the CP of prunus necrotic ringspot virus (PNRSV), the causal agent of several threatening diseases of Prunus fruit trees, are poorly studied. Previously, we identified a novel virus in apple, apple necrotic mosaic virus (ApNMV), which is phylogenetically related to PNRSV and probably associated with apple mosaic disease in China. Full-length cDNA clones of PNRSV and ApNMV were constructed, and both are infectious in cucumber (Cucumis sativus L.), an experimental host. PNRSV exhibited higher systemic infection efficiency with more severe symptoms than ApNMV. Reassortment analysis of genomic RNA segments 1-3 found that RNA3 of PNRSV could enhance the long-distance movement of an ApNMV chimaera in cucumber, indicating the association of RNA3 of PNRSV with viral long-distance movement. Deletion mutagenesis of the PNRSV CP showed that the basic motif from amino acids 38 to 47 was crucial for the CP to maintain the systemic movement of PNRSV. Moreover, we found that arginine residues 41, 43 and 47 codetermine viral long-distance movement. The findings demonstrate that the CP of PNRSV is required for long-distance movement in cucumber, which expands the functions of ilarvirus CPs in systemic infection. For the first time, we identified involvement of Ilarvirus CP protein during long-distance movement.


Assuntos
Ilarvirus , Prunus , Ilarvirus/genética , Ilarvirus/metabolismo , RNA Viral/metabolismo , Prunus/genética , China
15.
J Environ Sci (China) ; 125: 650-661, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375947

RESUMO

The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Praguicidas , Poluentes Químicos da Água , Animais , Cardiotoxicidade/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Embrião não Mamífero , Larva , Praguicidas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
16.
Sci Total Environ ; 855: 158715, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113792

RESUMO

Many nanomaterials containing different valences of iron have been designed for applications in biomedicine, energy, catalyzers, nanoenzymes, and so on. However, the toxic effects of the valence state of iron in iron-based nanomaterials are still unclear. Here, three different-valence iron-based nanomaterials (nFe@Fe3O4, nFe3O4 and nFe2O3) were synthesized and exposed to zebrafish embryos and mammalian cardiomyocytes. All of them induced ferroptosis along with an increase in valence through iron overload and the Fenton reaction. Specifically, we exposed Tg (cmlc2:EGFP) zebrafish to the three iron-based nanomaterials and found that nFe@Fe3O4 treatments led to enlarged ventricles, while nFe3O4 and nFe2O3 increased atrial size, which was consistent with the results from hematoxylin-eosin staining and in situ hybridization. Moreover, we used ferroptosis inhibitors (ferrostatin-1 or deferoxamine) to treat zebrafish along with nanoparticles exposure and found that the cardiac developmental defects caused by nFe3O4 and nFe2O3, but not nFe@Fe3O4, could be completely rescued by ferroptosis inhibitors. We further found that nFe@Fe3O4, rather than nFe3O4 and nFe2O3, reduced the dissolved oxygen in the medium, which resulted in hypoxia and acceleration of heart tube formation and ventricular enlargement, and both were fully rescued by oxygen donors combined with ferroptosis inhibitors. Consistently, these findings were also observed in mammalian cardiomyocytes. In summary, our study demonstrates that the valence state of iron-based nanomaterials determines the ferroptosis potential. Our study also clarifies that high-valence iron-based nanomaterials induce an enlarged atrium via ferroptosis, while low-valence ones increase the ventricular size through both hypoxia and ferroptosis, which is helpful to understand the potential adverse effects of different valences of iron-based nanomaterials on environmental health and assure the responsible and sustainable development of nanotechnology.


Assuntos
Ferroptose , Nanoestruturas , Animais , Ferro/toxicidade , Peixe-Zebra , Nanoestruturas/toxicidade , Hipóxia , Oxigênio , Mamíferos
17.
J Environ Sci (China) ; 124: 76-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182181

RESUMO

Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Embrião não Mamífero , Fungicidas Industriais/toxicidade , Larva , Opsinas/metabolismo , Opsinas/farmacologia , Pirimidinas , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
18.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501425

RESUMO

The natural host range for brassica yellows virus (BrYV) is generally limited to Cruciferae. However, we found that BrYV can naturally infect strawberry. The full-length genome sequences of BrYV-MB (accession No. MZ666129) and BrYV-HY (accession No. ON060762) identified in strawberry from Yantai and Beijing, China, were obtained by high-throughput sequencing (HTS) combined with the RT-PCR and RACE techniques. The complete genome sequences of BrYV-MB and BrYV-HY are 5666 nt and contain six open reading frames (ORFs). The two isolates have the highest nucleotide (nt) sequence identity of 99.0%. The infectious cDNA clone of BrYV-HY was constructed through homologous recombination and used to agroinfiltrate Nicotiana benthamiana and Arabidopsis thaliana. The inoculated leaves of N. benthamiana showed necrotic symptoms after 4 days of inoculation (dpi), and the systematic leaves of A. thaliana exhibited purple symptoms at 14 dpi. To develop a rapid and high-sensitive method for the detection of BrYV, a TaqMan real-time fluorescence quantitative RT-PCR method (TaqMan RT-qPCR) was established. Under optimum reaction conditions, the sensitivity of the detection was as low as 100 fg and approximately 100-fold more sensitive than the conventional RT-PCR, so it can be used in large-scale testing.

19.
Ecotoxicol Environ Saf ; 246: 114168, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244174

RESUMO

Black phosphorus quantum dots (BPQDs) are considered to have wide application prospects due to their excellent properties. However, there is no study on the effect of BPQDs on glucose metabolism. In this study, blood glucose was significantly increased when mice were continuously intragastrically administered 0.1 and 1 mg/kg bw BPQDs. The blood glucose level of the mice was elevated from Day 7 to Day 28. BPQD exposure also decreased the area under the curve (AUC) of the oral glucose tolerance test (OGTT). After exposure, the pancreas somatic index was increased. Moreover, the serum insulin and glucagon levels were elevated and the relative area of islet ß cells was increased in BPQD-exposed mice, while insulin signaling cascades were reduced in muscle tissues. In summary, our study demonstrated for the first time that BPQD exposure induces glucose disorder and insulin resistance in muscle, which is helpful to understand the biosafety of black phosphorus nanomaterials and promote the sustainable development of nanotechnology.


Assuntos
Resistência à Insulina , Insulinas , Pontos Quânticos , Camundongos , Animais , Pontos Quânticos/toxicidade , Fósforo , Glicemia
20.
Contrast Media Mol Imaging ; 2022: 3111585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003997

RESUMO

This study aims to explore the magnetic resonance imaging (MRI) findings of the pituitary gland (PG) in children with growth hormone deficiency (GHD) and their correlation with the growth hormone (GH) peak during clinical GH stimulation tests. Sixty-one children with GHD diagnosed and treated between December 2018 and December 2021 were retrospectively analyzed in terms of clinical and pituitary morphological MRI data. MRI measurements of various diameters of the adenohypophysis (AH) were obtained to analyze the differences of the measured values in different genders and age groups, as well as their relationship with the GH peak in GH stimulation tests. Among the 61 children with GHD, the superior PG margin was protuberant in 2 cases, flat in 13 cases, and concave in 46 cases. The three age groups showed similar pituitary morphology and stalk (P > 0.05). On T1-weighted images, the proportion of isointensity was lower while the proportion of slightly-low signal intensity was higher in the anterior pituitary gland (APG) of children aged >10 compared with those aged 7-10. The comparison of AH linear parameters and GH peak values of male patients among different age groups showed that the anteroposterior (sagittal) diameter of AH and GH peak were the highest in the >10-year-old group and the lowest in the ≤6-year-old group, with those of the 7-10-year-old group in between (P < 0.05). In females, the anteroposterior (sagittal) diameter and GH peak were higher in the 7-10-year-old group and >10-year-old group compared with the ≤6-year-old group (P < 0.05). The MRI coronal and sagittal heights of PG in children with GHD were positively correlated with the GH peak value. In conclusion, in GHD patients, the coronal and sagittal heights as well as the coronal width of AH do not change with sex or age, but the coronal and sagittal heights of PG are positively correlated with the GH peak of GH stimulation tests, which has high application value in the diagnosis of children with GHD.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Hipófise , Criança , Feminino , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/farmacologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipófise/diagnóstico por imagem , Hipófise/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA