Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Rep ; 13(1): 17134, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816883

RESUMO

Psoriasis, which is one of the most common skin diseases, involves an array of complex immune constituents including T cells, dendritic cells and monocytes. Particularly, the cytokine IL17A, primarily generated by TH17 cells, assumes a crucial function in the etiology of psoriasis. In this study, a comprehensive investigation utilizing bulk RNA analysis, single-cell RNA sequencing, and spatial transcriptomics was employed to elucidate the underlying mechanisms of psoriasis. Our study revealed that there is an overlap between the genes that are differentially expressed in psoriasis patients receiving three anti-IL17A monoclonal antibody drugs and the genes that are differentially expressed in lesion versus non-lesion samples in these patients. Further analysis using single-cell and spatial data from psoriasis samples confirmed the expression of hub genes that had low expressions in psoriasis tissue but were up-regulated after anti-IL17A treatments. These genes were found to be associated with the treatment effects of brodalumab and methotrexate, but not adalimumab, etanercept, and ustekinumab. Additionally, these genes were predominantly expressed in fibroblasts. In our study, fibroblasts were categorized into five clusters. Notably, hub genes exhibited predominant expression in cluster 3 fibroblasts, which were primarily engaged in the regulation of the extracellular matrix and were predominantly located in the reticular dermis. Subsequent analysis unveiled that cluster 3 fibroblasts also established communication with epithelial cells and monocytes via the ANGPTL-SDC4 ligand-receptor configuration, and their regulation was governed by the transcription factor TWIST1. Conversely, cluster 4 fibroblasts, responsible for vascular endothelial regulation, were predominantly distributed in the papillary dermis. Cluster 4 predominantly engaged in interactions with endothelial cells via MDK signals and was governed by the distinctive transcription factor, ERG. By means of an integrated analysis encompassing bulk transcriptomics, single-cell RNA sequencing, and spatial transcriptomics, we have discerned genes and clusters of fibroblasts that potentially contribute to the pathogenesis of psoriasis.


Assuntos
Psoríase , Transcriptoma , Humanos , Células Endoteliais/metabolismo , Psoríase/metabolismo , Fatores de Transcrição/genética , Fibroblastos/metabolismo
2.
EFORT Open Rev ; 8(9): 672-679, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655848

RESUMO

Purpose: Septic arthritis (SA) is an intra-articular infection caused by purulent bacteria and the only effective method is surgical intervention. Two-stage arthroplasty is considered the gold standard treatment for SA, but recent studies have found that single-stage arthroplasty can achieve the same efficacy as two-stage arthroplasty. This study aimed to compare the efficacy of single- vs two-stage arthroplasty in the treatment of (acute or quiescent) SA. Methods: The review process was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched the PubMed, EMBASE, Medline, and Cochrane Library databases to identify all literature on the treatment of SA using single- and two-stage arthroplasty from the date of database inception to November 10, 2022. Data on reinfection rates were expressed as odds ratios and 95% CIs. Results: Seven retrospective studies with a total of 413 patients were included. Pooled analysis showed no difference in the reinfection rate between single- and two-stage arthroplasty. Subgroup analysis found no difference between the single- and two-stage arthroplasty groups in the incidence of purulent infection of the hip and knee. Cumulative meta-analysis showed gradual stabilization of outcomes. Conclusions: Based on our meta-analysis of available retrospective studies, we found no significant difference in reinfection rates between single- and two-stage arthroplasty for SA. Further prospective cohort studies are needed to confirm our results, although our meta-analysis provides important insights into the current literature on this topic.

3.
J Pain Res ; 16: 2713-2728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577159

RESUMO

Background: The pain-fatigue-sleep disturbance symptom cluster is commonly experienced by breast cancer patients, and a variety of nonpharmacological interventions are used to treat this symptom cluster. Objective: To compare the efficacy of nonpharmacological interventions in improving the symptoms of the pain-fatigue-sleep disturbance symptom cluster in breast cancer patients. Methods: A comprehensive literature search was conducted in the PubMed, EMBASE, Cochrane Library, CINAHL, CNKI, and Wanfang databases to identify randomized controlled studies from database inception to May 2022. Two reviewers independently performed data retrieval and risk of bias assessments. The consistency model was used to conduct network meta-analyses (NMA) based on the frequentist framework to assess the interventions, which were ranked by the surface under the cumulative ranking curve (SUCRA). Finally, the CINeMA application was used to evaluate the results of the NMA and the evidence of quality. The results Twenty-three eligible studies assessing 14 interventions were included. According to SUCRA values, among the management effects of the three symptoms, the effect of progressive muscle relaxation (PMR) ranked first, followed by mindfulness-based stress reduction (MBSR). The overall evidence quality of our study ranges from very low to moderate. Conclusion: PMR and MBSR were effective interventions for the pain-fatigue-sleep disturbance symptom cluster in breast cancer patients. Clinical recommendations prioritize PMR for symptom management, followed by MBSR. However, this should be interpreted cautiously, as the confidence in the evidence was not high.

4.
Autophagy ; 19(11): 2884-2898, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409929

RESUMO

ABBREVIATIONS: AMBRA1 autophagy and beclin 1 regulator 1; ATG14 autophagy related 14; ATG5 autophagy related 5; ATG7 autophagy related 7; BECN1 beclin 1; BECN2 beclin 2; CC coiled-coil; CQ chloroquine CNR1/CB1R cannabinoid receptor 1 DAPI 4',6-diamidino-2-phenylindole; dCCD delete CCD; DRD2/D2R dopamine receptor D2 GPRASP1/GASP1 G protein-coupled receptor associated sorting protein 1 GPCR G-protein coupled receptor; ITC isothermal titration calorimetry; IP immunoprecipitation; KD knockdown; KO knockout; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; NRBF2 nuclear receptor binding factor 2; OPRD1/DOR opioid receptor delta 1 PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15 phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K class III phosphatidylinositol 3-kinase; PtdIns3P phosphatidylinositol-3-phosphate; RUBCN rubicon autophagy regulator; SQSTM1/p62 sequestosome 1; UVRAG UV radiation resistance associated; VPS vacuolar protein sorting; WT wild type.

5.
Nat Commun ; 14(1): 2731, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169793

RESUMO

A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.


Assuntos
Adipócitos Bege , Tecido Adiposo Bege , Obesidade , Animais , Humanos , Masculino , Camundongos , Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Obesidade/genética , Obesidade/metabolismo , Termogênese
6.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904305

RESUMO

A europium complex with double bonds was synthesized with crotonic acid as the ligand and a europium ion as the center ion. Then, the obtained europium complex was added to synthesized poly(urethane-acrylate) macromonomers to prepare the bonded polyurethane-europium materials by the polymerization of the double bonds in the complex and the poly(urethane-acrylate) macromonomers. The prepared polyurethane-europium materials had high transparency, good thermal stability and good fluorescence. The storage moduli of polyurethane-europium materials are obviously higher than those of pure polyurethane. Polyurethane-europium materials exhibit bright red light with good monochromaticity. The light transmittance of the material decreases slightly with increases in the europium complex content, but the luminescence intensity gradually increases. In particular, polyurethane-europium materials possess a long luminescence lifetime, which has potential applications for optical display instruments.

8.
Cell Metab ; 35(4): 620-632.e5, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812915

RESUMO

How exercise elicits systemic metabolic benefits in both muscles and non-contractile tissues is unclear. Autophagy is a stress-induced lysosomal degradation pathway that mediates protein and organelle turnover and metabolic adaptation. Exercise activates autophagy in not only contracting muscles but also non-contractile tissues including the liver. However, the role and mechanism of exercise-activated autophagy in non-contractile tissues remain mysterious. Here, we show that hepatic autophagy activation is essential for exercise-induced metabolic benefits. Plasma or serum from exercised mice is sufficient to activate autophagy in cells. By proteomic studies, we identify fibronectin (FN1), which was previously considered as an extracellular matrix protein, as an exercise-induced, muscle-secreted, autophagy-inducing circulating factor. Muscle-secreted FN1 mediates exercise-induced hepatic autophagy and systemic insulin sensitization via the hepatic receptor α5ß1 integrin and the downstream IKKα/ß-JNK1-BECN1 pathway. Thus, we demonstrate that hepatic autophagy activation drives exercise-induced metabolic benefits against diabetes via muscle-secreted soluble FN1 and hepatic α5ß1 integrin signaling.


Assuntos
Fibronectinas , Proteômica , Camundongos , Animais , Fibronectinas/metabolismo , Fígado/metabolismo , Autofagia , Integrinas
9.
Stem Cells Transl Med ; 11(11): 1151-1164, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36173887

RESUMO

Stem cells are enabling an improved understanding of the peripheral arterial disease, and patient-specific stem cell-derived endothelial cells (ECs) present major advantages as a therapeutic modality. However, applications of patient-specific induced pluripotent stem cell (iPSC)-derived ECs are limited by rapid loss of mature cellular function in culture. We hypothesized that changes in autophagy impact the phenotype and cellular proliferation of iPSC-ECs. Endothelial cells were differentiated from distinct induced pluripotent stem cell lines in 2D culture and purified for CD144 positive cells. Autophagy, mitochondrial morphology, and proliferation were characterized during differentiation and over serial passages in culture. We found that autophagy activity was stimulated during differentiation but stagnated in mature iPSC-ECs. Mitochondria remodeled through mitophagy during differentiation and demonstrated increasing membrane potential and mass through serial passages; however, these plateaued, coinciding with decreased proliferation. To evaluate for oxidative damage, iPSC-ECs were alternatively grown under hypoxic culture conditions; however, hypoxia only transiently improved the proliferation. Stimulating mTOR-independent ULK1-mediated autophagy with a plant derivative AMP kinase activator Rg2 significantly improved proliferative capacity of iPSC-ECs over multiple passages. Therefore, autophagy, a known mediator of longevity, played an active role in remodeling mitochondria during maturation from pluripotency to a terminally differentiated state. Autophagy failed to compensate for increasing mitochondrial mass over serial passages, which correlated with loss of proliferation in iPSC-ECs. Stimulating ULK1-kinase-driven autophagy conferred improved proliferation and longevity over multiple passages in culture. This represents a novel approach to overcoming a major barrier limiting the use of iPSC-ECs for clinical and research applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Endoteliais , Diferenciação Celular , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Endotélio
11.
Front Cell Dev Biol ; 10: 891332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832792

RESUMO

With great sadness, the scientific community received the news of the loss of Beth Levine on 15 June 2020. Dr. Levine was a pioneer in the autophagy field and work in her lab led not only to a better understanding of the molecular mechanisms regulating the pathway, but also its implications in multiple physiological and pathological conditions, including its role in development, host defense, tumorigenesis, aging or metabolism. This review does not aim to provide a comprehensive view of autophagy, but rather an outline of some of the discoveries made by the group of Beth Levine, from the perspective of some of her own mentees, hoping to honor her legacy in science.

12.
Front Cell Dev Biol ; 10: 844481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646940

RESUMO

Autophagy is a stress-induced lysosomal degradation pathway regulated by evolutionarily conserved autophagy-related (ATG) genes. Recent research has revealed that autophagy plays an important role in the regulation of energy metabolism, development of metabolic tissues, and pathogenesis of metabolic disorders. Bulk and selective degradation by autophagy helps maintain protein homeostasis and physiological function of cells. Aside from classical degradative roles, ATG proteins also carry out non-classical secretory functions of metabolic tissues. In this review, we summarize recent progresses and unanswered questions on the mechanisms of autophagy and ATG proteins in metabolic regulation, with a focus on organelle and nutrient storage degradation, as well as vesicular and hormonal secretion. Such knowledge broadens our understanding on the cause, pathophysiology, and prevention of metabolic diseases including obesity and diabetes.

13.
Pharmaceutics ; 14(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35745765

RESUMO

(1) Background: The glucocorticoid receptor (GR) plays a key role in lipid metabolism, but investigations of GR activation as a potential therapeutic approach have been hampered by a lack of selective agonists. Ginsenoside compound K (CK) is natural small molecule with a steroid-like structure that offers a variety of therapeutic benefits. Our study validates CK as a novel GR agonist for the treatment of obesity. (2) Methods: By using pulldown and RNA interference, we determined that CK binds to GR. The anti-obesity potential effects of CK were investigated in obese mice, including through whole-body energy homeostasis, glucose and insulin tolerance, and biochemical and proteomic analysis. Using chromatin immunoprecipitation, we identified GR binding sites upstream of lipase ATGL. (3) Results: We demonstrated that CK reduced the weight and blood lipids of mice more significantly than the drug Orlistat. Proteomics data showed that CK up-regulated autophagy regulatory proteins, enhanced fatty acid oxidation proteins, and decreased fatty acid synthesis proteins. CK induced lipophagy with the initial formation of the phagophore via AMPK/ULK1 activation. However, a blockade of autophagy did not disturb the increase in CK on lipase expression, suggesting that autophagy and lipase are independent pathways in the function of CK. The pulldown and siRNA experiments showed that GR is the critical target. After binding to GR, CK not only activated lipophagy, but also promoted the binding of GR to the ATGL promoter. (4) Conclusions: Our findings indicate that CK is a natural food candidate for reducing fat content and weight.

14.
Curr Biol ; 32(12): R684-R696, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728554

RESUMO

Maintaining nutrient and energy homeostasis is crucial for the survival and function of cells and organisms in response to environmental stress. Cells have evolved a stress-induced catabolic pathway, termed autophagy, to adapt to stress conditions such as starvation. During autophagy, damaged or non-essential cellular structures are broken down in lysosomes, and the resulting metabolites are reused for core biosynthetic processes or energy production. Recent studies have revealed that autophagy can target and degrade different types of nutrient stores and produce a variety of metabolites and fuels, including amino acids, nucleotides, lipids and carbohydrates. Here, we will focus on how autophagy functions to balance cellular nutrient and energy demand and supply - specifically, how energy deprivation switches on autophagic catabolism, how autophagy halts anabolism by degrading the protein synthesis machinery, and how bulk and selective autophagy-derived metabolites recycle and feed into a variety of bioenergetic and anabolic pathways during stress conditions. Recent new insights and progress in these areas provide a better understanding of how resource mobilization and reallocation sustain essential metabolic and anabolic activities under unfavorable conditions.


Assuntos
Autofagia , Inanição , Autofagia/fisiologia , Metabolismo Energético , Humanos , Lisossomos/metabolismo , Nutrientes , Inanição/metabolismo
15.
Chemosphere ; 291(Pt 1): 132816, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34752833

RESUMO

Polar stratospheric clouds (PSCs), of which the surface is a dynamic liquid water layer and might consist of aqueous HNO3 and H2O2, is a well-known key meteorological condition contributing to the ozone hole in the polar stratosphere. PSCs has been considered to provide abundant surface for the heterogeneous reactions causing the formation of the Cl2 and HOCl, which are further photolyzed into Cl and ClO radicals leading to the ozone destruction. Here we demonstrated that the sunlight drives the massive and stable production of OH radicals in aqueous HNO3 and its main photo-induced byproduct HNO2. We also found that the photo-generated OH radicals in aqueous HNO3, HNO2 and H2O2 have the remarkable capability to react with the dissolved HCl, Cl- and Br- to form halogen radicals. In addition, we observed that the H2O2 can react with dissolved HCl and Br- in darkness to form and release Cl2 and Br2 gases, which could further be photolyzed into reactive halogen radicals whenever sunlight is available. All these findings suggest that, except for the well-known heterogeneous reactions, photochemical reactions involving the aqueous HNO3 and H2O2 on and within PSCs surface might constitute another important halogen activation pathway for ozone destruction. This study may shed deeper insights into the mechanism of halogen radicals resulting in ozone depletion in polar stratosphere.


Assuntos
Perda de Ozônio , Ozônio , Halogênios , Peróxido de Hidrogênio , Radical Hidroxila
16.
Nat Cell Biol ; 23(12): 1220-1221, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34876686
17.
Autophagy ; 17(10): 3262-3263, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34281478

RESUMO

Macroautophagy/autophagy is primarily considered as a degradative pathway via the lysosome, yet the secretory functions of autophagy proteins have recently been unveiled. Autophagy proteins have been implicated in metabolic organ development, homeostasis and function, and deficiency in autophagy is associated with metabolic disorders. However, the molecular mechanisms by which autophagy proteins regulate energy metabolism and insulin sensitivity were unclear. We previously showed that systemic activation of autophagy by a hyperactive BECN1F121A mutant reduces insulin storage in islets but improves insulin sensitivity systemically. In our recent study, we found that BECN1 functions in adipose tissue to systemically regulate energy metabolism. Adipose-specific expression of BECN1F121A is sufficient to improve systemic insulin sensitivity without negatively affecting pancreatic insulin storage. We demonstrated that BECN1 interacts with exocyst subunit proteins and facilitates the secretion of an adipokine, ADIPOQ (adiponectin, C1Q and collagen domain containing), in adipose tissue. Thus, our findings suggest that BECN1 regulates insulin sensitivity in a non-degradative and non-cell autonomous manner by facilitating ADIPOQ secretion. Our study also highlighted the distinct functions of autophagy proteins in different metabolic tissues.


Assuntos
Autofagia , Resistência à Insulina , Adiponectina , Animais , Proteína Beclina-1/metabolismo , Insulina/metabolismo , Lisossomos/metabolismo , Camundongos
18.
Cell Rep ; 35(8): 109184, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038729

RESUMO

Autophagy dysregulation is implicated in metabolic diseases, including type 2 diabetes. However, the mechanism by which the autophagy machinery regulates metabolism is largely unknown. Autophagy is generally considered a degradation process via lysosomes. Here, we unveil a metabolically important non-cell-autonomous, non-degradative mechanism regulated by the essential autophagy protein Becn1 in adipose tissue. Upon high-fat diet challenge, autophagy-hyperactive Becn1F121A mice show systemically improved insulin sensitivity and enhanced activation of AMP-activated protein kinase (AMPK), a central regulator of energy homeostasis, via a non-cell-autonomous mechanism mediated by adiponectin, an adipose-derived metabolic hormone. Adipose-specific Becn1F121A expression is sufficient to activate AMPK in non-adipose tissues and improve systemic insulin sensitivity by increasing adiponectin secretion. Further, Becn1 enhances adiponectin secretion by interacting with components of the exocyst complex via the coiled-coil domain. Together, our study demonstrates that Becn1 improves insulin sensitivity by facilitating adiponectin secretion through binding the exocyst in adipose tissue.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Proteína Beclina-1/metabolismo , Insulina/metabolismo , Lisossomos/metabolismo , Animais , Autofagia , Humanos , Camundongos , Transfecção
19.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33608268

RESUMO

Drug abuse is a foremost public health problem. Cocaine is a widely abused drug worldwide that produces various reward-related behaviors. The mechanisms that underlie cocaine-induced disorders are unresolved, and effective treatments are lacking. Here, we found that an autophagy-related protein Becn2 is a previously unidentified regulator of cocaine reward behaviors. Becn2 deletion protects mice from cocaine-stimulated locomotion and reward behaviors, as well as cocaine-induced dopamine accumulation and signaling, by increasing presynaptic dopamine receptor 2 (D2R) autoreceptors in dopamine neurons. Becn2 regulates D2R endolysosomal trafficking, degradation, and cocaine-induced behaviors via interacting with a D2R-bound adaptor GASP1. Inactivating Becn2 by upstream autophagy inhibitors stabilizes striatal presynaptic D2R, reduces dopamine release and signaling, and prevents cocaine reward in normal mice. Thus, the autophagy protein Becn2 is essential for cocaine psychomotor stimulation and reward through regulating dopamine neurotransmission, and targeting Becn2 by autophagy inhibitors is a potential strategy to prevent cocaine-induced behaviors.


Assuntos
Cocaína , Animais , Proteínas Relacionadas à Autofagia , Cocaína/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Recompensa
20.
J Cosmet Dermatol ; 20(7): 2371-2372, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33314594
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA