RESUMO
The recent discovery of the pivotal role of central nervous system (CNS) in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, while tumors can establish local autonomic and sensory neural networks to transmit signals into the CNS, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor crosstalk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathological mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
RESUMO
The role of circDHX8 in the interplay between autophagy and gastric cancer (GC) progression remains unclear. In this study, we investigated the mechanism underlying the role of hsa_circ_003899 (circDHX8) in the malignancy of GC. Differential expression of circRNAs between GC and normal tissues was determined using circle-seq and microarray datasets (GSE83521). These circRNAs were validated using qPCR and Sanger sequencing. The function of circDHX8 was investigated through interference with circDHX8 expression experiments using in vitro and in vivo functional assays. Western blotting, immunofluorescence, and transmission electron microscopy were used to establish whether circDHX8 promoted autophagy in GC cells. To elucidate the mechanism underlying the circDHX8-mediated regulation of autophagy, we performed bioinformatics analysis, RNA pull-down, mass spectrometry (MS), RNA immunoprecipitation (RIP), and other western Blot related experiments. Hsa_circ_0003899 (circDHX8) was identified as upregulated and shown to enhance the malignant progression in GC cells by promoting cellular autophagy. Mechanistically, circDHX8 increased ATG2B protein levels by preventing ubiquitin-mediated degradation, thereby facilitating cell proliferation and invasion in GC. Additionally, circDHX8 directly interacts with the E3 ubiquitin-protein ligase RNF5, inhibiting the RNF5-mediated degradation of ATG2B. Concurrently, ATG2B, an acetylated protein, is subjected to SIRT1-mediated deacetylation, enhancing its binding to RNF5. Consequently, we established a novel mechanism for the role of circDHX8 in the malignant progression of GC.