Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 220: 115993, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151075

RESUMO

Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.


Assuntos
Criptosporidiose , Cryptosporidium , Humanos , 1-Fosfatidilinositol 4-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Cryptosporidium/metabolismo , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis/metabolismo
2.
Biomed Pharmacother ; 166: 115412, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660652

RESUMO

Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogues were designed, synthesized, and evaluated for anti-inflammatory activity for ALI treatment. We found that compound 8n exhibited the best anti-inflammatory activity through inhibiting LPS-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in Raw264.7 cells and activating the Nrf2/HO-1 pathway. Furthermore, we discovered in a LPS-induced ALI mice model that compound 8n significantly reduced the infiltration of inflammatory cells into lung tissue to achieve the effect of protecting lung tissues and improving ALI. Additionally, our mice model study revealed that compound 8n had a good expectorant effect. These results consistently support that lansiumamide analogue 8n represents a new class of anti-inflammatory agents with potential as a lead compound for further development into a therapeutic drug for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Citocinas , Modelos Animais de Doenças
3.
Eur J Med Chem ; 250: 115195, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809706

RESUMO

Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.


Assuntos
Asma , Inibidores da Fosfodiesterase 4 , Psoríase , Doença Pulmonar Obstrutiva Crônica , Humanos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/tratamento farmacológico , Psoríase/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA