Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 35(7): 1247-1248, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169739

RESUMO

SUMMARY: Mechanistic molecular studies in biomedical research often discover important genes that are aberrantly over- or under-expressed in disease. However, manipulating these genes in an attempt to improve the disease state is challenging. Herein, we reveal Drug Gene Budger (DGB), a web-based and mobile application developed to assist investigators in order to prioritize small molecules that are predicted to maximally influence the expression of their target gene of interest. With DGB, users can enter a gene symbol along with the wish to up-regulate or down-regulate its expression. The output of the application is a ranked list of small molecules that have been experimentally determined to produce the desired expression effect. The table includes log-transformed fold change, P-value and q-value for each small molecule, reporting the significance of differential expression as determined by the limma method. Relevant links are provided to further explore knowledge about the target gene, the small molecule and the source of evidence from which the relationship between the small molecule and the target gene was derived. The experimental data contained within DGB is compiled from signatures extracted from the LINCS L1000 dataset, the original Connectivity Map (CMap) dataset and the Gene Expression Omnibus (GEO). DGB also presents a specificity measure for a drug-gene connection based on the number of genes a drug modulates. DGB provides a useful preliminary technique for identifying small molecules that can target the expression of a single gene in human cells and tissues. AVAILABILITY AND IMPLEMENTATION: The application is freely available on the web at http://DGB.cloud and as a mobile phone application on iTunes https://itunes.apple.com/us/app/drug-gene-budger/id1243580241? mt=8 and Google Play https://play.google.com/store/apps/details? id=com.drgenebudger. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Descoberta de Drogas , Transcriptoma , Telefone Celular , Descoberta de Drogas/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Internet , Aplicativos Móveis
2.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29199020

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Assuntos
Catalogação/métodos , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos/normas , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Armazenamento e Recuperação da Informação/métodos , Programas Nacionais de Saúde , National Institutes of Health (U.S.)/normas , Transcriptoma , Estados Unidos
3.
Int J Mol Sci ; 16(10): 23867-80, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473831

RESUMO

Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus' peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment.


Assuntos
Acrilatos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Acrilatos/química , Antibacterianos/química , Cátions/química , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia , Ácidos Polimetacrílicos/química , Tensoativos/química , Tensoativos/farmacologia
4.
Chem Commun (Camb) ; 50(53): 7071-4, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24854366

RESUMO

Acrylic copolymers with appropriate compositions of counits having cationic charge with 2-carbon and 6-carbon spacer arms can show superior antibacterial activities with concomitant very low hemolytic effect. These amphiphilic copolymers represent one of the most promising synthetic polymer antibacterial systems reported.


Assuntos
Resinas Acrílicas/síntese química , Antibacterianos/síntese química , Resinas Acrílicas/química , Animais , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA