Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
NMR Biomed ; : e5092, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38154459

RESUMO

Several studies have suggested that atypical social processing in neurodevelopmental conditions (e.g. autism) is associated with differences in excitation and inhibition, through changes in the levels of glutamate and gamma-aminobutyric acid (GABA). While associations between baseline metabolite levels and behaviours can be insightful, assessing the neurometabolic response of GABA and glutamate during social processing may explain altered neurochemical function in more depth. Thus far, there have been no attempts to determine whether changes in metabolite levels are detectable using functional MRS (fMRS) during social processing in a control population. We performed Mescher-Garwood point resolved spectroscopy edited fMRS to measure the dynamic response of GABA and glutamate in the superior temporal sulcus (STS) and visual cortex (V1) while viewing social stimuli, using a design that allows for analysis in both block and event-related approaches. Sliding window analyses were used to investigate GABA and glutamate dynamics at higher temporal resolution. The changes of GABA and glutamate levels with social stimulus were largely non-significant. A small decrease in GABA levels was observed during social stimulus presentation in V1, but no change was observed in STS. Conversely, non-social stimulus elicited changes in both GABA and glutamate levels in both regions. Our findings suggest that the current experimental design primarily captures effects of visual stimulation, not social processing. Here, we discuss the feasibility of using fMRS analysis approaches to assess changes in metabolite response.

2.
Dev Psychopathol ; : 1-13, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990408

RESUMO

Sensory differences and anxiety disorders are highly prevalent in autistic individuals with and without ADHD. Studies have shown that sensory differences and anxiety are associated and that intolerance of uncertainty (IU) plays an important role in this relationship. However, it is unclear as to how different levels of the sensory processing pathway (i.e., perceptual, affective, or behavioral) contribute. Here, we used psychophysics to assess how alterations in tactile perception contribute to questionnaire measures of sensory reactivity, IU, and anxiety. Thirty-eight autistic children (aged 8-12 years; 27 with co-occurring ADHD) were included. Consistent with previous findings, mediation analyses showed that child-reported IU fully mediated an association between parent-reported sensory reactivity and parent-reported anxiety and that anxiety partially mediated an association between sensory reactivity and IU. Of the vibrotactile thresholds, only simultaneous frequency discrimination (SFD) thresholds correlated with sensory reactivity. Interestingly, we found that sensory reactivity fully mediated an association between SFD threshold and anxiety, and between SFD threshold and IU. Taken together, those findings suggest a mechanistic pathway whereby tactile perceptual alterations contribute to sensory reactivity at the affective level, leading in turn to increased IU and anxiety. This stepwise association can inform potential interventions for IU and anxiety in autism.

3.
Mol Autism ; 14(1): 31, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635263

RESUMO

BACKGROUND: Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. METHODS: Leveraging a combined sample of 3868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO, and SEEK (sub)constructs. RESULTS: All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses supported the validity of a supra-modal HYPER construct (ωH = .800) but not a supra-modal HYPO construct (ωH = .653), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ωH = .800; 4/7 modalities). Modality-specific subscales demonstrated significant added value for all response patterns. Meta-analytic correlations varied by construct, although sensory features tended to correlate most with other domains of core autism features and co-occurring psychiatric symptoms (with general HYPER and speech HYPO demonstrating the largest numbers of practically significant correlations). LIMITATIONS: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to caregiver report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. CONCLUSION: Of the three sensory response patterns, only HYPER demonstrated sufficient evidence for valid interpretation at the supra-modal level, whereas supra-modal HYPO/SEEK constructs demonstrated substantial psychometric limitations. For clinicians and researchers seeking to characterize sensory reactivity in autism, modality-specific response pattern scores may represent viable alternatives that overcome many of these limitations.


Assuntos
Transtorno Autístico , Adolescente , Humanos , Teorema de Bayes , Cognição , Análise de Dados , Fenótipo
4.
Neuropsychol Rev ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300725

RESUMO

In recent years, there has been an increasing quest in improving our understanding of the neurocognitive deficits underlying adult attention-deficit/hyperactivity disorder (ADHD). Current statistical manuals of psychiatric disorders emphasize inattention and hyperactivity-impulsivity symptoms, but empirical studies have also shown consistent alterations in inhibitory control. To date, there is no established neuropsychological test to assess inhibitory control deficits in adult ADHD. A common paradigm for assessing response inhibition is the stop-signal task (SST). Following PRISMA-selection criteria, our systematic review and meta-analysis integrated the findings of 26 publications with 27 studies examining the SST in adult ADHD. The meta-analysis, which included 883 patients with adult ADHD and 916 control participants, revealed reliable inhibitory control deficits, as expressed in prolonged SST response times, with a moderate effect size [Formula: see text] = 0.51 (95% CI: 0.376-0.644,[Formula: see text] < 0.0001). The deficits were not moderated by study quality, sample characteristics or clinical parameters, suggesting that they may be a phenotype in this disorder. The analyses of secondary outcome measures revealed greater SST omission errors and reduced go accuracy in patients, indicative of altered sustained attention. However, only few (N < 10) studies were available for these measures. Our meta-analysis suggests that the SST, in conjunction with other tests and questionnaires, could become a valuable tool for assessing inhibitory control deficits in adult ADHD.

5.
Mol Autism ; 14(1): 15, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041612

RESUMO

BACKGROUND: Individuals on the autism spectrum have been long described to process sensory information differently than neurotypical individuals. While much effort has been leveraged towards characterizing and investigating the neurobiology underlying the sensory differences of autism, there has been a notable lack of consistency in the terms being used to describe the nature of those differences. MAIN BODY: We argue that inconsistent and interchangeable terminology-use when describing the sensory differences of autism has become problematic beyond mere pedantry and inconvenience. We begin by highlighting popular terms that are currently being used to describe the sensory differences of autism (e.g. "sensitivity", "reactivity" and "responsivity") and discuss why poor nomenclature may hamper efforts towards understanding the aetiology of sensory differences in autism. We then provide a solution to poor terminology-use by proposing a hierarchical taxonomy for describing and referring to various sensory features. CONCLUSION: Inconsistent terminology-use when describing the sensory features of autism has stifled discussion and scientific understanding of the sensory differences of autism. The hierarchical taxonomy proposed was developed to help resolve lack of clarity when discussing the sensory differences of autism and to place future research targets at appropriate levels of analysis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos
6.
Res Sq ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712092

RESUMO

Background Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. Methods Leveraging a combined sample of 3,868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO and SEEK (sub)constructs. Results All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses unambiguously supported the validity of a supra-modal HYPER construct (ω H = .800), whereas a coherent supra-modal HYPO construct was not supported (ω H = .611), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ω H = .799; 4/7 modalities). Within each sensory construct, modality-specific subscales demonstrated substantial added value beyond the supra-modal score. Meta-analytic correlations varied by construct, although sensory features tended to correlate most strongly with other domains of core autism features and co-occurring psychiatric symptoms. Certain subconstructs within the HYPO and SEEK domains were also associated with lower adaptive behavior scores. Limitations: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to parent-report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. Conclusion Psychometric issues may limit the degree to which some measures of supra-modal HYPO/SEEK can be interpreted. Depending on the research question at hand, modality-specific response pattern scores may represent a valid alternative method of characterizing sensory reactivity in autism.

7.
Neurosci Biobehav Rev ; 144: 104940, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332780

RESUMO

Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Dev Cogn Neurosci ; 58: 101171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372005

RESUMO

Response inhibition refers to the cancelling of planned (or restraining of ongoing) actions and is required in much of our everyday life. Response inhibition appears to improve dramatically in early development and plateau in adolescence. The fronto-basal-ganglia network has long been shown to predict individual differences in the ability to enact response inhibition. In the current study, we examined whether developmental trajectories of fiber-specific white matter properties of the fronto-basal-ganglia network was predictive of parallel developmental trajectories of response inhibition. 138 children aged 9-14 completed the stop-signal task (SST). A subsample of 73 children underwent high-angular resolution diffusion MRI data for up to three time points. Performance on the SST was assessed using a parametric race modelling approach. White matter organization of the fronto-basal-ganglia circuit was estimated using fixel-based analysis. Contrary to predictions, we did not find any significant associations between maturational trajectories of fronto-basal-ganglia white matter and developmental improvements in SST performance. Findings suggest that the development of white matter organization of the fronto-basal-ganglia and development of stopping performance follow distinct maturational trajectories.


Assuntos
Substância Branca , Adolescente , Criança , Humanos , Inibição Psicológica , Gânglios da Base/fisiologia , Análise e Desempenho de Tarefas , Gânglios
9.
J Autism Dev Disord ; 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272043

RESUMO

Sensory differences are highly prevalent in autistic individuals. However, few studies have compared their presentation between autistic males and autistic females. We used psychophysics to assess and compare tactile perceptual sensitivity between autistic and non-autistic boys and girls aged between 8 and 12 years of age. While there were sex-differences of amplitude discrimination, frequency discrimination and order judgement thresholds, these sex-differences were not autism-specific. Mean RTs and detection thresholds were elevated in autism but were comparable between the sexes. Tactile sensitivity measures that are elevated in autism but are otherwise comparable between autistic males and autistic females suggest the possibility that certain sensory features could be used as sex-indifferent markers of autism. Further investigation with larger and more representative samples should be conducted before any stronger conclusions are made.

10.
Sci Rep ; 12(1): 9923, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705672

RESUMO

Transcranial magnetic stimulation (TMS) is used to probe inhibitory intracortical neurotransmission and has been used to infer the neurobiological dysfunction that may underly several neurological disorders. One technique, short-interval intracortical inhibition (SICI), indexes gamma-aminobutyric acid (GABA) mediated inhibitory activity and is a promising biomarker. However emerging evidence suggests SICI does not exclusively represent GABAergic activity because it may be influenced by inter-individual differences in the specific excitatory neural populations activated by TMS. Here we used the latency of TMS motor evoked potentials (MEPs) to index these inter-individual differences, and found that a significant proportion of the observed variability in SICI magnitude was accounted for by MEP latency, r = - 0.57, r2 = 0.33, p = .014. We conclude that SICI is influenced by inter-individual differences in the excitatory neural populations activated by TMS, reducing the precision of this GABAergic probe. Interpreting SICI measures in the context of MEP latency may facilitate a more precise assessment of GABAergic intracortical inhibition. The reduced cortical inhibition observed in some neuropathologies could be influenced by reduced activity in specific excitatory neural populations. Including MEP latency assessment in research investigating SICI in clinical groups could assist in differentiating the cortical circuits impacted by neurological disorders.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Eletromiografia , Potencial Evocado Motor/fisiologia , Individualidade , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos
11.
Psychophysiology ; 59(10): e14077, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503930

RESUMO

While mentally simulated actions activate similar neural structures to overt movement, the role of the primary motor cortex (PMC) in motor imagery remains disputed. The aim of the study was to use continuous theta burst stimulation (cTBS) to modulate corticospinal activity to investigate the putative role of the PMC in implicit motor imagery in young adults with typical and atypical motor ability. A randomized, double blind, sham-controlled, crossover, offline cTBS protocol was applied to 35 young adults. During three separate sessions, adults with typical and low motor ability (developmental coordination disorder [DCD]), received active cTBS to the PMC and supplementary motor area (SMA), and sham stimulation to either the PMC or SMA. Following stimulation, participants completed measures of motor imagery (i.e., hand rotation task) and visual imagery (i.e., letter number rotation task). Although active cTBS significantly reduced corticospinal excitability in adults with typical motor ability, neither task performance was altered following active cTBS to the PMC or SMA, compared to performance after sham cTBS. These results did not differ across motor status (i.e., typical motor ability and DCD). These findings are not consistent with our hypothesis that the PMC (and SMA) is directly involved in motor imagery. Instead, previous motor cortical activation observed during motor imagery may be an epiphenomenon of other neurophysiological processes and/or activity within brain regions involved in motor imagery. This study highlights the need to consider multi-session theta burst stimulation application and its neural effects when probing the putative role of motor cortices in motor imagery.


Assuntos
Córtex Motor , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Humanos , Imagens, Psicoterapia , Córtex Motor/fisiologia , Ritmo Teta/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
12.
Soc Cogn Affect Neurosci ; 17(1): 61-71, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780868

RESUMO

Interpersonal motor resonance (IMR) is a common putative index of the mirror neuron system (MNS), a network containing specialised cells that fire during both action execution and observation. Visual content inputs to the MNS, however, it is unclear whether visual behaviours mediate the putative MNS response. We aimed to examine gaze effects on IMR during action observation. Neurotypical adults (N = 99; 60 female) underwent transcranial magnetic stimulation, electromyography, and eye-tracking during the observation of videos of actors performing grasping actions. IMR was measured as a percentage change in motor evoked potentials (MEPs) of the first dorsal interosseous muscle during action observation relative to baseline. MEP facilitation was observed during action observation, indicating IMR (65.43%, SE = 11.26%, P < 0.001). Fixations occurring in biologically relevant areas (face/hand/arm) yielded significantly stronger IMR (81.03%, SE = 14.15%) than non-biological areas (63.92%, SE = 14.60, P = 0.012). This effect, however, was only evident in the first of four experimental blocks. Our results suggest that gaze fixation can modulate IMR, but this may be affected by the salience and novelty of the observed action. These findings have important methodological implications for future studies in both clinical and healthy populations.


Assuntos
Córtex Motor , Adulto , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Feminino , Mãos/fisiologia , Humanos , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos
13.
J Autism Dev Disord ; 52(1): 402-413, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33713242

RESUMO

This non-randomised pilot study evaluated the impact of a community football program on motor ability in children aged 5-12 years with autism spectrum disorder. Sixteen children were evaluated at baseline-and-post attendance in a football program for a varied number of weeks and compared to 19 children engaging in treatment-as-usual. Primary analyses indicated a statistically significant increase in total MABC-2, aiming and catching, and balance scores for the intervention group, with no changes in scores in the comparison group. There were no changes in manual dexterity across either group. At a between group level, the changes in aiming and catching scores were significantly greater for the intervention group. Further analyses highlighted the potential importance of social impairments regarding aiming and catching.


Assuntos
Transtorno do Espectro Autista , Futebol Americano , Futebol , Criança , Humanos , Destreza Motora , Projetos Piloto
14.
Behav Res Methods ; 54(3): 1530-1540, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34751923

RESUMO

The stop-signal paradigm has become ubiquitous in investigations of inhibitory control. Tasks inspired by the paradigm, referred to as stop-signal tasks, require participants to make responses on go trials and to inhibit those responses when presented with a stop-signal on stop trials. Currently, the most popular version of the stop-signal task is the 'choice-reaction' variant, where participants make choice responses, but must inhibit those responses when presented with a stop-signal. An alternative to the choice-reaction variant of the stop-signal task is the 'anticipated response inhibition' task. In anticipated response inhibition tasks, participants are required to make a planned response that coincides with a predictably timed event (such as lifting a finger from a computer key to stop a filling bar at a predefined target). Anticipated response inhibition tasks have some advantages over the more traditional choice-reaction stop-signal tasks and are becoming increasingly popular. However, currently, there are no openly available versions of the anticipated response inhibition task, limiting potential uptake. Here, we present an open-source, free, and ready-to-use version of the anticipated response inhibition task, which we refer to as the OSARI (the Open-Source Anticipated Response Inhibition) task.


Assuntos
Inibição Psicológica , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
15.
Mov Disord ; 37(3): 563-573, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854494

RESUMO

BACKGROUND: Individuals with Tourette syndrome (TS) often report that they express tics as a means of alleviating the experience of unpleasant sensations. These sensations are perceived as an urge to act and are referred to as premonitory urges. Premonitory urges have been the focus of recent efforts to develop interventions to reduce tic expression in those with TS. OBJECTIVE: The aim of this study was to examine the contribution of brain γ-aminobutyric acid (GABA) and glutamate levels of the right primary sensorimotor cortex (SM1), supplementary motor area (SMA), and insular cortex (insula) to tic and urge severity in children with TS. METHODS: Edited magnetic resonance spectroscopy was used to assess GABA+ (GABA + macromolecules) and Glx (glutamate + glutamine) of the right SM1, SMA, and insula in 68 children with TS (MAge = 10.59, SDAge = 1.33) and 41 typically developing control subjects (MAge = 10.26, SDAge = 2.21). We first compared GABA+ and Glx levels of these brain regions between groups. We then explored the association between regional GABA+ and Glx levels with urge and tic severity. RESULTS: GABA+ and Glx of the right SM1, SMA, and insula were comparable between the children with TS and typically developing control subjects. In children with TS, lower levels of SMA GABA+ were associated with more severe and more frequent premonitory urges. Neither GABA+ nor Glx levels were associated with tic severity. CONCLUSIONS: These results broadly support the role of GABAergic neurotransmission within the SMA in the experience of premonitory urges in children with TS. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Transtornos de Tique , Tiques , Síndrome de Tourette , Criança , Pré-Escolar , Ácido Glutâmico , Humanos , Lactente , Córtex Motor/diagnóstico por imagem , Transtornos de Tique/complicações , Tiques/complicações , Síndrome de Tourette/complicações , Ácido gama-Aminobutírico
16.
J Neurosci Res ; 99(12): 3238-3249, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34747052

RESUMO

The mirror neuron system (MNS) has been theorized to play a neurobiological role in a number of social cognitive abilities and is commonly indexed putatively in humans via interpersonal motor resonance (IMR) and mu suppression. Although both indices are thought to measure similar neuronal populations (i.e., "mirror neurons"), it has been suggested that these methods are unrelated, and therefore, incompatible. However, prior studies reporting no relationships were typically conducted in small and underpowered samples. Thus, we aimed to investigate this potential association in a large sample of neurotypical adults (N = 116; 72 females). Participants underwent transcranial magnetic stimulation (TMS), electromyography (EMG), and electroencephalography (EEG) during the observation of videos of actors performing grasping actions in order to index IMR and mu suppression (in beta, lower alpha, and upper alpha bandwidths). A series of linear regressions revealed no associations between IMR and each of the mu suppression bandwidths. Supplementary Bayesian analyses provided further evidence in favor of the null (B01  = 8.85-8.93), providing further support for no association between the two indices of MNS activity. Our findings suggest that these two measures may indeed be unrelated indices that perhaps assess different neurophysiological aspects of the MNS. These results have important implications for future studies examining the MNS.


Assuntos
Neurônios-Espelho , Adulto , Teorema de Bayes , Eletroencefalografia , Feminino , Humanos , Estimulação Magnética Transcraniana
17.
Transl Psychiatry ; 11(1): 411, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326312

RESUMO

Individuals on the autism spectrum are often reported as being hyper- and/or hyporeactive to sensory input. These sensory symptoms were one of the key observations that led to the development of the altered excitation-inhibition (E-I) model of autism, which posits that an increase ratio of excitatory to inhibitory signaling may explain certain phenotypical expressions of autism spectrum disorders (ASD). While there has been strong support for the altered E-I model of autism, much of the evidence has come from animal models. With regard to in-vivo human studies, evidence for altered E-I balance in ASD come from studies adopting magnetic resonance spectroscopy (MRS). Spectral-edited MRS can be used to provide measures of the levels of GABA + (GABA + macromolecules) and Glx (glutamate + glutamine) in specific brain regions as proxy markers of inhibition and excitation respectively. In the current study, we found region-specific elevations of Glx in the primary sensorimotor cortex (SM1) in ASD. There were no group differences of GABA+ in either the SM1 or thalamus. Higher levels of Glx were associated with more parent reported difficulties of sensory hyper- and hyporeactivity, as well as reduced feed-forward inhibition during tactile perception in children with ASD. Critically, the finding of elevated Glx provides strong empirical support for increased excitation in ASD. Our results also provide a clear link between Glx and the sensory symptoms of ASD at both behavioral and perceptual levels.


Assuntos
Transtorno do Espectro Autista , Glutamina , Criança , Ácido Glutâmico , Humanos , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico
18.
PLoS One ; 16(7): e0253733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260606

RESUMO

INTRODUCTION: Classroom-based active breaks are a feasible and effective way to reduce and break up sitting time, and to potentially benefit physical health in school children. However, the effect of active breaks on children's cognitive functions and brain activity remains unclear. OBJECTIVE: We investigated the impact of an active break intervention on typically developing children's cognitive functions and brain activity, sitting/standing/stepping, on-task behaviour, and enjoyment. METHODS: Up to 141 children, aged between 6 and 8 years (46% girls), were included, although about half of them completed two of the assessments (n = 77, working memory; n = 67, dorsolateral prefrontal cortex haemodynamic response). Classrooms from two consenting schools were randomly allocated to a six-week simple or cognitively engaging active break intervention. Classrooms from another school acted as a control group. The main analyses used linear mixed models, clustered at the class level and adjusted for sex and age, to investigate the effects of the interventions on response inhibition, lapses of attention, working memory, event-related brain haemodynamic response (dorsolateral prefrontal cortex). The mediating effects of sitting/standing/stepping on cognition/brain activity were also explored. To test intervention fidelity, we investigated differences by group on the change values in children's sitting, standing, and moving patterns during class/school time using linear mixed models. Generalized linear mixed models clustered at the individual level were used to examine on-task behaviour data. For the intervention groups only, we also assessed children's perceived enjoyment, physical exertion and mental exertion related to the active breaks and compared the results using independent t-tests. RESULTS: There was a significantly greater positive change in the proportion of deoxygenated haemoglobin in the left dorsolateral prefrontal cortex of children assigned to cognitively engaging active breaks compared to the control group (B = 1.53 × 10-07, 95% CI [0.17 × 10-07, 2.90 × 10-07]), which under the same cognitive performance is suggestive of improved neural efficiency. Mixed models showed no significant effects on response inhibition, lapses of attention, working memory. The mediation analysis revealed that the active breaks positively affected response inhibition via a change in sitting and standing time. The sitting, standing, and moving patterns and on-task behaviour were positively affected by the active breaks at end of trial, but not at mid-trial. Children in both intervention groups showed similarly high levels of enjoyment of active breaks. CONCLUSION: Cognitively engaging active breaks may improve brain efficiency in the dorsolateral prefrontal cortex, the neural substrate of executive functions, as well as response inhibition, via effects partially mediated by the change in sitting/stepping time. Active breaks can effectively reduce sitting and increase standing/stepping and improve on-task behaviour, but the regular implementation of these activities might require time for teachers to become familiar with. Further research is needed to confirm what type of active break best facilitates cognition.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Exercício Físico/fisiologia , Instituições Acadêmicas , Comportamento Sedentário , Atenção/fisiologia , Criança , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia
19.
Cortex ; 142: 283-295, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315068

RESUMO

Previous Diffusion Tensor Imaging (DTI) studies in children suggest that developmental improvements in inhibitory control is largely mediated by the degree of white matter organisation within a right-lateralised network of fronto-basal-ganglia regions. Recent advances in diffusion imaging analysis now permit greater biological specificity, both in identifying specific fibre populations within a voxel, as well as in the underlying microstructural properties of that white matter. In the present work, employing a novel fixel-based analysis (FBA) framework, we aimed to comprehensively investigate microstructure within the fronto-basal-ganglia circuit in childhood, and its contribution to inhibition performance. Diffusion MRI data were obtained from 43 healthy children and adolescents aged 9-11 years (10.42 ± .41 years, 18 females). Response inhibition for each participant was assessed using the Stop-signal Task (SST) and quantified as a Stop-Signal Reaction Time (SSRT). All steps relevant to FBA were implemented in MRtrix3Tissue, a fork of the MRtrix3 software library. The fronto-basal-ganglia circuit were delineated using probabilistic tractography to identify the tracts connecting the subthalamic nucleus, pre-supplementary motor area and the inferior frontal gyrus. Connectivity-based fixel enhancement (CFE) was then used to assess the association between fibre density (FD) and fibre cross-section (FC) with inhibitory ability. Significant negative associations were identified for FD in both the right and left fronto-basal-ganglia circuit whereby greater FD was associated with better inhibition performance (e.g., reduced SSRTs). This effect was specifically localised to clusters of fixels within white matter proximal to the right subthalamic nucleus. We did not report any meaningful associations between SSRT and FC. Whilst findings are broadly consistent with prior DTI evidence, current results suggest that SSRT is predominantly facilitated by subcortical microstructure of the connections projecting from the subthalamic nucleus to the cortical regions of the network. Our findings extend current understanding of the role of white matter in childhood response inhibition.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adolescente , Gânglios da Base , Criança , Imagem de Difusão por Ressonância Magnética , Feminino , Gânglios , Humanos , Substância Branca/diagnóstico por imagem
20.
Hum Mov Sci ; 77: 102787, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33798929

RESUMO

While there have been consistent behavioural reports of atypical hand rotation task (HRT) performance in adults with developmental coordination disorder (DCD), this study aimed to clarify whether this deficit could be attributed to specific difficulties in motor imagery (MI), as opposed to broad deficits in general mental rotation. Participants were 57 young adults aged 18-30 years with (n = 22) and without DCD (n = 35). Participants were compared on the HRT, a measure of MI, and the letter number rotation task (LNRT), a common visual imagery task. Only participants whose behavioural performance on the HRT suggested use of a MI strategy were included in group comparisons. Young adults with DCD were significantly less efficient compared to controls when completing the HRT yet showed comparable performance on the LNRT relative to adults with typical motor ability. Our data are consistent with the view that atypical HRT performance in adults with DCD is likely to be attributed to specific difficulties engaging in MI, as opposed to deficits in general mental rotation. Based on the theory that MI provides insight into the integrity of internal action representations, these findings offer further support for the internal modelling deficit hypothesis of DCD.


Assuntos
Deficiências do Desenvolvimento/fisiopatologia , Mãos/fisiologia , Imaginação , Transtornos das Habilidades Motoras/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Destreza Motora , Desempenho Psicomotor , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA