Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Asian Nat Prod Res ; 24(1): 66-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33550877

RESUMO

Eighteen novel 3/5(3,5)-(di)nitropaeonol hydrazone derivatives were prepared, and their structures well characterized by 1H NMR, HRMS, and mp. Due to the steric hindrance, the substituents on the C = N double bond of all hydrazine compounds (except E/Z = 4/1 for IV-1g, IV-1l, IV-2b, and E/Z = 3/2 for IV-1n, IV-3a) adopted E configuration. Among all compounds, four compounds 2, 4, IV-1j, and IV-1n exhibited potent nematicidal activity than their precursor paeonol, especially 5-nitropaeonol (2) and 3,5-dinitropaeonol (4) displayed the most potent nematicidal activity Heterodera glycines in vivo with LC50 values of 32.3307 and 36.7074 mg/L, respectively.


Assuntos
Hidrazonas , Tylenchoidea , Animais , Antinematódeos , Hidrazonas/farmacologia , Estrutura Molecular
2.
J Cell Biochem ; 120(2): 2058-2069, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30246300

RESUMO

BACKGROUND AND OBJECTIVES: In this study, we aimed to study the molecular mechanisms underlying the symptoms of hyperresponsiveness during intubation. METHOD: The value of circulating long noncoding RNA (lncRNA)-prognosis-associated gallbladder cancer (PAGBC) in the prediction of hyperresponsiveness upon intubation during general anesthesia was evaluated via the receiver operating characteristic analyses of serum miR-511, serum PAGBC, and serum nitric oxide (NO). In addition, the possible association between lncRNA-PAGBC/NOS1 messenger RNA (mRNA) and miR-511 was further validated via real-time quantitative polymerase chain reaction, immunohistochemistry assay, computational analysis, and luciferase assay. Enzyme-linked immunosorbent assay and Western blot analysis were also conducted to establish the regulatory relationship among PAGBC, miR-511, and NO synthase 1 (NOS1). RESULTS: Compared with circulating miR-511 and serum NO, circulating PAGBC was associated with a higher predictive value. In addition, a negative correlation was found between serum miR-511 and serum PAGBC (multicorrelation coefficient: -0.5) as well as between serum miR-511 and serum NO (multicorrelation coefficient: -0.6). In addition, both lncRNA-PAGBC and NO were decreased in patients with hyperresponsiveness, whereas the levels of miR-511 and NOS1 in these patients were similar to those in normal patients. Furthermore, our computational analyses and luciferase assays validated the direct binding between miR-511 and lncRNA-PAGBC, whereas NOS1 mRNA was identified as a virtual target gene of miR-511. Moreover, in the presence of lncRNA-PAGBC, we also observed an evident increase in the levels of NOS1 and NO accompanied by an obvious decrease of miR-511 expression. CONCLUSION: LncRNA-PAGBC downregulated the expression of miR-511, which in turn upregulated the expression of NOS1 mRNA and led to the increase in NOS1 expression, thus leading to the inhibited responsiveness (normal-responsiveness rather than hyperresponsiveness) to intubation in patients.

3.
Biochem Biophys Res Commun ; 502(3): 409-414, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29852169

RESUMO

Hepatic ischemia and reperfusion (I/R) injury is a major cause of liver damage during liver transplantation, resection surgery, shock, and trauma. It has been reported that TXNIP expression was upregulated in a rat model of hepatic I/R injury. However, the role of TXNIP in the hepatic I/R injury is little known. In our study, we investigated the biological role of TXNIP and its potential molecular mechanism in the human hepatic cell line (HL7702 cells). Using oxygen-glucose deprivation and reoxygenation (OGD/R) to create a cell model of hepatic I/R injury, we found that the mRNA and protein expression levels of TXNIP were upregulated in HL7702 cells exposed to OGD/R. TXNIP overexpression remarkably promoted OGD/R-induced cell apoptosis and lactate dehydrogenase (LDH) release, both of which were significantly decreased by TXNIP knockdown. The production of malondialdehyde (MDA) was also increased by TXNIP overexpression, but was reduced by TXNIP knockdown. Moreover, TXNIP overexpression significantly upregulated the phosphorylation of p38 and JNK, which was remarkably inhibited by TXNIP knockdown. Additionally, p38-specific inhibitor SB203580 abrogated the effect of TXNIP overexpression on OGD/R-induced cell injury. Taken together, these results indicated that TXNIP knockdown alleviated hepatocyte I/R injury through preventing p38/JNK pathway activation. Thus, TXNIP might offer a novel potential therapeutic target for the treatment of hepatic I/R injury.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Hepatócitos/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Malondialdeído/metabolismo , Modelos Biológicos , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/terapia , Regulação para Cima
4.
Dalton Trans ; 45(26): 10807-20, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27294827

RESUMO

Reactions of amine-bridged bis(phenolate) protio-ligands N,N-bis(3,5-di-tert-butyl-2-hydroxybenzyl)aminoacetic acid (L(1)-H3) and N,N-bis[3,5-bis(α,α'-dimethylbenzyl)-2-hydroxybenzyl]aminoacetic acid (L(2)-H3), with 1 equiv. M[N(SiMe3)2]3 (M = La, Nd, Sm, Gd, Y) in THF at room temperature yielded the neutral rare-earth complexes [M2(L)2(THF)4] (L = L(1), M = La (), Nd (), Sm (), Gd (), Y (); L = L(2), M = La (), Nd (), Sm (), Gd (), Y ()). All of these complexes were characterized by single-crystal X-ray diffraction, elemental analysis and in the case of yttrium and lanthanum complexes, (1)H NMR spectroscopy. The molecular structure of revealed dinuclear species in which the eight-coordinate lanthanum centers were bonded to two oxygen atoms of two THF molecules, to three oxygen atoms and one nitrogen atom of one L(1) ligand, and two oxygen atoms of the carboxyl group of another. Complexes were also dinuclear species containing seven-coordinate metal centers similar to , albeit with bonding to one rather than two carboxyl group oxygens of another ligand. Further treatment of with excess benzyl alcohol provided dinuclear complex [La2(L(1))2(BnOH)6] (), in which each lanthanum ion is eight-coordinate, bonded to three oxygen atoms and one nitrogen atom of one ligand, three oxygen atoms of three BnOH molecules, as well as one oxygen atom of bridging carboxyl group of the other ligand. In the presence of BnOH, complexes efficiently catalyzed the ring-opening polymerization of l-lactide in a controlled manner and gave polymers with relatively narrow molecular weight distributions. The kinetic and mechanistic studies associated with the ROP of l-lactide using /BnOH initiating system have been performed.


Assuntos
Aminas/química , Complexos de Coordenação/química , Dioxanos/química , Metais Terras Raras/química , Fenóis/química , Polimerização , Aminas/síntese química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Ligantes , Metais Terras Raras/síntese química , Modelos Moleculares , Fenóis/síntese química , Poliésteres/síntese química
5.
Neurosci Bull ; 25(3): 115-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448685

RESUMO

OBJECTIVE: To investigate the protein levels of phospho-ERK and phospho-APE/Ref-1 in hippocampal neurons after global cerebral ischemia reperfusion in rats, and observe the relationship between transmembrane signal transduction and repair of DNA damage. The role of ERK signal transduction pathway following global cerebral ischemia reperfusion in rats is further discussed. METHODS: Ninety healthy male SD rats were divided into 3 groups randomly: Sham group (S group), Ischemia reperfusion group (IR group) and Pd98059 pretreatment/ischemia reperfusion group (PD group). Global cerebral ischemia reperfusion model was established by four-vessel occlusion (4-VO) method, and reperfusion was performed 5 minutes following ischemia. Protein levels of phospho-ERK and phospho-APE/Ref-1 were detected using immunohistochemical method at 2 h, 6 h, 12 h, 24 h, 48 h and 72 h after reperfusion, and neuron apoptosis was observed by HE and TUNEL staining. RESULTS: In CA1 region of IR group, TUNEL positive cells began to appear at 6 h after IR, and reached the apex during 24 h to 48 h. However, TUNEL positive was most strongly exhibited in PD group. In IR group, phospho-ERK was obviously detected in CA3 region at 2 h after IR, and its level was gradually decreased from 6 h until totally absent at 48 h. Besides, phospho-ERK expression in PD group was weaker than that in IR group. For phospho-APE/Ref-1, its expression began to appear in CA1 region in IR group at 2 h after IR, with no obvious changes during 2 h to 12 h. Phospho-APE/Ref-1 expression began to decrease at 24 h and this decrease continued thereafter. Expression level of phospho-APE/Ref-1 in PD group was lower than that in IR group. Results showed the concurrence of decreased phospho-ERK expression level and increased neuron apoptosis after cerebral ischemia reperfusion, the former of which was consistent with the decrease of phospho-APE/Ref-1 expression. Also, the greater the inhibition of ERK phosphorylation was, the greater decrease of APE/Ref-1 expression occurred. CONCLUSION: Activation of ERK signal transduction pathway increased the expression of phospho-APE/Ref-1, and thus faciliated the repair of DNA damage. So, activation of ERK signal transduction pathway may protect neurons from apoptosis after cerebral ischemia reperfusion.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Reparo do DNA/fisiologia , Reperfusão/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Isquemia Encefálica/prevenção & controle , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA