Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(7): 110309, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39055937

RESUMO

Mitochondrial dysfunction and Müller cells gliosis are significant pathological characteristics of retinal degeneration (RD) and causing blinding. Stem cell therapy is a promising treatment for RD, the recently accepted therapeutic mechanism is cell fusion induced materials transfer. However, whether materials including mitochondrial transfer between grafted stem cells and recipient's cells contribute to suppressing gliosis and mechanism are unclear. In present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) transferred mitochondria to Müller cells by cell fusion and tunneling nanotubes. BMSCs-derived mitochondria (BMSCs-mito) were integrated into mitochondrial network of Müller cells, improving mitochondrial function, reducing oxidative stress and gliosis, which protected visual function partially in the degenerative rat retina. RNA sequencing analysis revealed that BMSCs-mito increased mitochondrial DNA (mtDNA) content and facilitated mitochondrial fusion in damaged Müller cells. It suggests that mitochondrial transfer from BMSCs remodels Müller cells metabolism and suppresses gliosis; thus, delaying the degenerative progression of RD.

2.
PLoS One ; 19(6): e0304283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848379

RESUMO

Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections have emerged as the most common therapeutic approach for the management of diabetic macular edema (DME). Despite their proven superiority over other interventions, there is a paucity of data regarding the relative effectiveness of anti-VEGF agents in treating DME diagnosed with different patterns of optical coherence tomography (OCT). In this regard, we conducted a systematic review and comparative analysis of the therapeutic efficacy of intravitreal bevacizumab, ranibizumab, aflibercept, and conbercept in the management of DME with diffuse retinal thickening (DRT), cystoid macular edema (CME), and serous retinal detachment (SRD) patterns identified using OCT. Our study encompassed a comprehensive search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang Data from their inception until January 25, 2023. The network meta-analysis involved the inclusion of 1606 patients from 20 retrospective studies with a moderate risk of bias but no evidence of publication bias. The DRT group had the highest increase in best-corrected visual acuity (BCVA) with anti-VEGF, while the SRD group had the greatest reduction in Central Macular Thickness (CMT). Furthermore, conbercept, ranibizumab, and bevacizumab, respectively, showed the best treatment outcomes for patients with DRT, CME, and SRD in terms of improvement in BCVA. And, conbercept exhibited the highest reduction in CMT in the DRT, CME, and SRD groups. In conclusion, our study highlights the efficacy of anti-VEGF agents in the management of DME and provides valuable insights into the selection of anti-VEGF agents tailored to the individual needs of patients.


Assuntos
Inibidores da Angiogênese , Retinopatia Diabética , Edema Macular , Fator A de Crescimento do Endotélio Vascular , Humanos , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/diagnóstico por imagem , Injeções Intravítreas , Edema Macular/tratamento farmacológico , Edema Macular/diagnóstico por imagem , Metanálise em Rede , Ranibizumab/uso terapêutico , Ranibizumab/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes de Fusão/administração & dosagem , Tomografia de Coerência Óptica , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/efeitos dos fármacos
3.
J Fish Biol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812441

RESUMO

Amomum tsao-ko Crevost et Lemarie (Zingiberaceae), an aromatic plant, has been considered to have diverse medicinal values and economic significance. It has been reported to possess antibacterial, antioxidant, and antidiabetic effects. With the increasing risk of diseases in aquaculture, there is a need for alternative solutions to chemical antibiotics. Plant extracts have shown promise as natural feed additives for aquatic animals. In this study, the antibacterial effect of Amomum tsao-ko crude extracts was evaluated using the Oxford cup method. The extracts exhibited significant antimicrobial activity against Salmonella typhimurium and Salmonella enteritidis. Furthermore, the addition of Amomum tsao-ko to fish feed resulted in notable changes in the gut structure of zebrafish and tilapia. The length and morphology of intestinal villi were enhanced, promoting improved digestion. Analysis of the gut microbial community revealed that Amomum tsao-ko supplementation induced key changes in the gut microbial community composition of both zebrafish and tilapia. Notably, a 1% inclusion of Amomum tsao-ko resulted in a marked rise in Proteobacteria levels in zebrafish, which diminished at 10% dosage. The supplement elicited mixed reactions among other bacterial phyla like Actinobacteria and Verrucomicrobiota. Fluctuations were also observed at the genus level, pointing to the concentration of Amomum tsao-ko playing a pivotal role in influencing the structure of intestinal bacteria. The findings of this study suggest that Amomum tsao-ko has antibacterial properties and can positively influence the gut health of fish. The potential use of Amomum tsao-ko as a natural feed additive holds promise for improving aquaculture practices and reducing reliance on chemical antibiotics. Further research is needed to explore the full potential and applications of Amomum tsao-ko in fish feed development.

4.
Redox Biol ; 67: 102911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816275

RESUMO

Excessive light exposure can damage photoreceptors and lead to blindness. Oxidative stress serves a key role in photo-induced retinal damage. Free radical scavengers have been proven to protect against photo-damaged retinal degeneration. Fullerol, a potent antioxidant, has the potential to protect against ultraviolet-B (UVB)-induced cornea injury by activating the endogenous stem cells. However, its effects on cell fate determination of Müller glia (MG) between gliosis and de-differentiation remain unclear. Therefore, we established a MG lineage-tracing mouse model of light-induced retinal damage to examine the therapeutic effects of fullerol. Fullerol exhibited superior protection against light-induced retinal injury compared to glutathione (GSH) and reduced oxidative stress levels, inhibited gliosis by suppressing the TGF-ß pathway, and enhanced the de-differentiation of MG cells. RNA sequencing revealed that transcription candidate pathways, including Nrf2 and Wnt10a pathways, were involved in fullerol-induced neuroprotection. Fullerol-mediated transcriptional changes were validated by qPCR, Western blotting, and immunostaining using mouse retinas and human-derived Müller cell lines MIO-M1 cells, confirming that fullerol possibly modulated the Nrf2, Wnt10a, and TGF-ß pathways in MG, which suppressed gliosis and promoted the de-differentiation of MG in light-induced retinal degeneration, indicating its potential in treating retinal diseases.


Assuntos
Células Ependimogliais , Degeneração Retiniana , Animais , Camundongos , Humanos , Células Ependimogliais/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Gliose/tratamento farmacológico , Gliose/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Retina/metabolismo , Neuroglia , Fator de Crescimento Transformador beta/metabolismo
5.
J Agric Food Chem ; 71(18): 7020-7031, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126773

RESUMO

Amomum tsao-ko is an important spice and medicinal plant that has received extensive attention in recent years for its high content of bioactive constituents with the potential for food additives and drug development. Diarylheptanoids are major and characteristic compounds in A. tsao-ko; however, the biochemical and molecular foundation of diarylheptanoids in fruit is unknown. We performed comparative metabolomics and transcriptomics studies in the ripening stages of A. tsao-ko fruit. The chemical constituents of fruit vary in different harvest periods, and the diarylheptanoids have a trend to decrease or increase with fruit development. GO enrichment analysis revealed that plant hormone signaling pathways including the ethylene-activated signaling pathway, salicylic acid, jasmonic acid, abscisic acid, and response to hydrogen peroxide were associated with fruit ripening. The biosynthetic pathways including phenylpropanoid, flavonoids, and diarylheptanoids biosynthesis were displayed in high enrichment levels in ripening fruit. The molecular networking and phytochemistry investigation of A. tsao-ko fruit has isolated and identified 10 diarylheptanoids including three new compounds. The candidate genes related to diarylheptanoids were obtained by coexpression network analysis and phylogenetic analysis. Two key genes have been verified to biosynthesize linear diarylheptanoids. This integrative approach provides gene regulation and networking associated with the biosynthesis of characteristic diarylheptanoids, which can be used to improve the quality of A. tsao-ko as food and medicine.


Assuntos
Amomum , Amomum/genética , Amomum/química , Frutas/genética , Frutas/química , Diarileptanoides , Filogenia , Transcriptoma , Metabolômica
6.
Theranostics ; 13(5): 1698-1715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056562

RESUMO

Rationale: Müller glia (MG) play a key role in maintaining homeostasis of the retinal microenvironment. In zebrafish, MG reprogram into retinal progenitors and repair the injured retina, while this MG regenerative capability is suppressed in mammals. It has been revealed that microglia in zebrafish contribute to MG reprogramming, whereas those in mammals are over-activated during retinal injury or degeneration, causing chronic inflammation, acceleration of photoreceptor apoptosis, and gliosis of MG. Therefore, how to modulate the phenotype of microglia to enhance MG reprogramming rather than gliosis is critical. Methods: PLX3397, a colony-stimulating factor 1 receptor inhibitor, was applied to deplete microglia in the retinas of retinal degeneration 10 (rd10) mice, and withdrawal of PLX3397 was used to induce the repopulated microglia (Rep-MiG). The protective roles of the Rep-MiG on the degenerative retina were assessed using a light/dark transition test, and scotopic electroretinogram recordings. Immunofluorescence, western blot, transcriptomic sequencing, and bioinformatics analysis were performed to investigate the effects and mechanisms of microglia on MG reprogramming. Results: Following PLX3397 withdrawal, Rep-MiG replenished the entire retina with a ramified morphology and significantly improved the retinal outer nuclear layer structure, the electroretinography response, and the visual behavior of rd10 mice. Coincidentally, MG were activated, de-differentiated, and showed properties of retina progenitors in a spatial correlation with Rep-MiG. Morphological and transcriptomic analyses revealed Rep-MiG significantly enhanced protease inhibitor activity and suppressed extracellular matrix (ECM) levels during retinal degeneration. Conclusions: It suggested that Rep-MiG with the homeostasis characteristic stimulated the progenitor cell-like properties of MG, probably through regulating ECM remodeling, which protected photoreceptors and improved visual function of rd10 mice. It might be a potential protocol to reprogram MG and delay mammal retinal degeneration.


Assuntos
Microglia , Degeneração Retiniana , Animais , Camundongos , Peixe-Zebra , Gliose , Neuroglia , Mamíferos
7.
Neural Netw ; 162: 384-392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947909

RESUMO

We propose a constrained linear data-feature-mapping model as an interpretable mathematical model for image classification using a convolutional neural network (CNN). From this viewpoint, we establish detailed connections between the traditional iterative schemes for linear systems and the architectures of the basic blocks of ResNet- and MgNet-type models. Using these connections, we present some modified ResNet models that, compared with the original models, have fewer parameters but can produce more accurate results, thereby demonstrating the validity of this constrained learning data-feature-mapping assumption. Based on this assumption, we further propose a general data-feature iterative scheme to demonstrate the rationality of MgNet. We also provide a systematic numerical study on MgNet to show its success and advantages in image classification problems, particularly in comparison with established networks.


Assuntos
Modelos Teóricos , Redes Neurais de Computação , Modelos Lineares
8.
Hortic Res ; 9: uhac211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479578

RESUMO

Amomum tsao-ko is an economically important spice plant in the ginger family (Zingiberaceae). The dried ripe fruit has been widely used as spice and medicine in Southeast Asia due to its distinct flavor metabolites. However, there is little genomic information available to understand the biosynthesis of its characteristic flavor compounds. Here, we present a high-quality chromosome-level genome of A. tsao-ko with a total length of 2.08 Gb assembled into 24 chromosomes. Potential relationships between genetic variation and chemical constituents were analyzed by a genome-wide association study of 119 representative A. tsao-ko specimens in China. Metabolome and transcriptome correlation analysis of different plant organs and fruit developmental stages revealed the proposed biosynthesis of the characteristic bicyclononane aldehydes and aromatic metabolites in A. tsao-ko fruit. Transcription factors of 20 families may be involved in the regulatory network of terpenoids. This study provides genomic and chemical insights into the biosynthesis of characteristic aroma and flavor constituents, which can be used to improve the quality of A. tsao-ko as food and medicine.

9.
Theranostics ; 12(6): 2687-2706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401812

RESUMO

Retinitis pigmentosa initially presents as night blindness owing to defects in rods, and the secondary degeneration of cones ultimately leads to blindness. Previous studies have identified active roles of microglia in the pathogenesis of photoreceptor degeneration in RP. However, the contribution of microglia to photoreceptor degeneration remains controversial, partly due to limited knowledge of microglial phenotypes during RP. Rationale: In this study, we investigated the pathways of microglial activation and its contribution to photoreceptor degeneration in RP. Methods: A classic RP model, Royal College of Surgeons rat, was used to explore the process of microglial activation during the development of RP. An inhibitor of colony-stimulating factor 1 receptor (PLX3397) was fed to RCS rats for sustained ablation of microglia. Immunohistochemistry, flow cytometry, RT-qPCR, electroretinography and RNA-Seq were used to investigate the mechanisms by which activated microglia influenced photoreceptor degeneration. Results: Microglia were gradually activated to disease-associated microglia in the photoreceptor layers of RCS rats. Sustained treatment with PLX3397 ablated most of the disease-associated microglia and aggravated photoreceptor degeneration, including the secondary degeneration of cones, by downregulating the expression of genes associated with photoreceptor function and components and exacerbating the impairment of photoreceptor cell function. Disease-associated microglial activation promoted microglia to engulf apoptotic photoreceptor cell debris and suppressed the increase of infiltrated neutrophils by increasing engulfment and inhibiting CXCL1 secretion by Müller cells, which provided a healthier microenvironment for photoreceptor survival. Conclusions: Our data highlight a key role of disease-associated microglia activation in the suppression of rod and cone degeneration, which reduces secondary damage caused by the accumulation of dead cells and infiltrated neutrophils in the degenerating retina.


Assuntos
Microglia , Degeneração Retiniana , Animais , Modelos Animais de Doenças , Humanos , Microglia/metabolismo , Neutrófilos/metabolismo , Ratos , Retina , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/etiologia
10.
Histol Histopathol ; 37(1): 1-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693982

RESUMO

Retina remodeling is a consequence of many retinal degenerative diseases that are characterized by progressive photoreceptor death. Retina remodeling involves a series of complex pathological processes, consisting of photoreceptor degeneration and death, as well as retinal cell reprogramming and "rewiring". This rewiring alters retinal neural circuits that are centered on synaptic connections and lead to widespread death of retinal cells. Retinal remodeling, especially inner retinal remodeling, is the major factor that limits the effectiveness of various treatment strategies, including cell therapy; thus, it is important to elucidate the mechanisms involved in retinal remodeling during retinal degeneration. Microglia are the dominant immune cells in the retina. Microglia monitor the retinal microenvironment, are activated following retinal injury or degeneration, have powerful phagocytosis capabilities, and play a critical role in synaptic pruning during central neural system development. Analogously, microglia have been found to participate in the clearance of synaptic elements in a complement-dependent manner in the classic retinitis pigmentosa (RP) model, Royal College of Surgeons (RCS) rats, and retard the formation of ectopic neuritogenesis and the deterioration of visual function during retinal degeneration. Since previous research on microglia has rarely concentrated on synaptic remodeling during retinal degeneration, summarizing the microglial mechanisms involved in retinal remodeling is necessary in order to design compounds targeting microglia and retinal remodeling that might be promising therapeutic strategies for treating retinal degeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Humanos , Microglia/metabolismo , Fagocitose , Ratos , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA