Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(8): 4020-4044, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38444346

RESUMO

The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.


Assuntos
Comunicação Celular , DNA , Nanoestruturas , Nanoestruturas/química , DNA/química , Humanos , Animais , Membrana Celular/química , Membrana Celular/metabolismo
2.
Anal Methods ; 16(11): 1639-1648, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414387

RESUMO

Benefiting from our discovery that ß-cyclodextrin (ß-CD) could enhance the catalytic activity of invertase through hydrogen bonding to improve detection sensitivity, a highly sensitive and convenient biosensor for the detection of miR-21 was proposed, which is based on the simplicity of reading signals from a personal glucose meter (PGM), combined with self-assembled signal amplification probes and the performance of ß-CD as an enhancer. In the presence of miR-21, magnetic nanoparticle coupled capture DNA (MNPs-cDNA) could capture it and then connect assist DNA/H1-invertase (aDNA/H1) and self-assembled signal amplification probes (H1/H2) in turn. As a result, a "super sandwich" structure was formed. The invertase on MNPs-cDNA could catalyze the hydrolysis of sucrose to glucose and this catalytic process could be enhanced by ß-CD. The PGM signal exhibited a linear correlation with miR-21 concentration within the range of 25 pmol L-1 to 3 nmol L-1, and the detection limit was as low as 5 pmol L-1 with high specificity. Moreover, the recoveries were 103.82-124.65% and RSD was 2.59-6.43%. Furthermore, the biosensor was validated for the detection of miR-21 in serum, and the results showed that miR-21 levels in serum samples from patients with Diffuse Large B-Cell Lymphoma (DLBCL) (n = 12) were significantly higher than those from healthy controls (n = 12) (P < 0.001). Therefore, the ingenious combination of PGM-based signal reading, self-assembled signal amplification probes and ß-CD as an enhancer successfully constructed a convenient, sensitive and specific biosensing method, which is expected to be applied to clinical diagnosis.


Assuntos
Automonitorização da Glicemia , MicroRNAs , Humanos , DNA Complementar , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/química , Glucose , DNA/genética
3.
Biomacromolecules ; 24(7): 3228-3236, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37319440

RESUMO

Receptor dimerization is an essential mechanism for the activation of most receptor tyrosine kinases by ligands. Thus, regulating the nanoscale spatial distribution of cell surface receptors is significant for studying both intracellular signaling pathways and cellular behavior. However, there are currently very limited methods for exploring the effects of modulating the spatial distribution of receptors on their function by using simple tools. Herein, we developed an aptamer-based double-stranded DNA bridge acting as "DNA nanobridge", which regulates receptor dimerization by changing the number of bases. On this basis, we confirmed that the different nanoscale arrangements of the receptor can influence receptor function and its downstream signals. Among them, the effect gradually changed from helping to activate to inhibiting as the length of DNA nanobridge increased. Hence, it can not only effectively inhibit receptor function and thus affect cellular behavior but also serve as a fine-tuning tool to get the desired signal activity. Our strategy is promising to provide insight into the action of receptors in cell biology from the perspective of spatial distribution.


Assuntos
Receptores de Superfície Celular , Transdução de Sinais , Dimerização , Receptores de Superfície Celular/metabolismo , Ligantes , DNA/genética , DNA/metabolismo
4.
ACS Sens ; 8(5): 1918-1928, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37130214

RESUMO

Benefiting from superior programmable performance and flexible design of DNA technologies, a variety of single-molecule RNA fluorescence imaging methodologies have been reported. However, the multiplexing capability is restricted owing to the spectral overlap of fluorophores. To overcome this limitation, some inspiring multiplex imaging strategies have been developed, but in practice, it remains challenging to achieve convenient and rapid imaging in live cells due to complex designs and additional pretreatments to increase cell permeability. Here, we report an activatable fluorescence-encoded nanoprobe (AFENP) strategy, through which fluorescence-encoded functional modules for qualitative analysis and activated nucleic acid assemblies functional modules for quantitative testing enable simple multiplexed RNA imaging in single live cells. As a proof of principle, by two distinguishable fluorophores (fluorescein and rhodamine B) and their seven distinctly differentiated intensity levels, self-assembled AFENP enables simplified and quick simultaneous in situ detection and imaging of seven types of targets in live single cells because the fluorescent quantitative signal is activated only in the presence of target avoiding the washing procedures and additional pretreatment to increase cell permeability is undesired. We expect that this practical single-cell analysis platform will be adopted for multiple gene expression analysis and imaging in live cells on account of its simplicity and multiplex capability.


Assuntos
DNA , RNA , Imagem Óptica , Corantes Fluorescentes/metabolismo , Fluoresceína
5.
Methods Appl Fluoresc ; 11(3)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37015242

RESUMO

In recent years, tetracyclines (TCs) is a hot research topic. Herein, we report an interesting discovery using the complexation of oxytetracycline and metal ions. In this study, according to the properties of Fe3O4nanoparticles (Fe3O4NPs) as a nanoenzyme, it can be used to catalyze the oxidation of KI by H2O2to produceI3-,while at the same timeI3-binds to rhodamine 6G (Rh6G) to form a conjoined particle (Rh6G ∼ I3)n, leading to a decrease in the fluorescence intensity of Rh6G. However, in the presence of TCs, Fe3O4NPs have a synergistic effect with TCs, leading to enhanced catalytic activity, as well as better selectivity compared to the activity of other reducing enzymes. Consequently,the fluorescent signal based on a resonance scattering effect between Rh6G andI3-is dependent on the concentration of TCs, thus achieving highly facile and robust detection of TCs. The limits of detection (LOD) of the method were 20 nM, 10 nM and 40 nM for oxytetracycline(OTC), tetracycline(TC) and chlortetracycline(CTC), respectively. Most importantly, the method can be successfully applied to the detection of TCs in milk, eggs, and honey. The recoveries of spiked samples ranged from 83.11 to 118.95%. Thus, a stable, hands-on strategy for the detection of TCs is proposed, which has potential applications in the field of food safety and environmental protection.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Oxitetraciclina , Antibacterianos , Tetraciclina , Tetraciclinas , Fluorescência , Nanopartículas Magnéticas de Óxido de Ferro/química
6.
Biosens Bioelectron ; 219: 114827, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308835

RESUMO

Exosomal proteins are considered to be promising indicators of cancer. Herein, a novel DNAzyme walkers-triggered CRISPR-Cas12a/Cas13a strategy was proposed for the synchronous determination of exosomal proteins: serum amyloid A-1 protein (SAA1) and coagulation factor V (FV). In this design, the paired antibodies were used to recognize targets, thereby ensuring the specificity. DNAzyme walkers were employed to convert the contents of SAA1 and FV into activators (P1 and P2), and one target can produce abundant activators, thus achieving an initial amplification of signal. Furthermore, the P1 and P2 can activate CRISPR-Cas12a/Cas13a system, which in turn trans-cleaves the reporters, enabling a second amplification and generating two fluorescent signals. The assay is highly sensitive (limits of detection as low as 30.00 pg/mL for SAA1 and 200.00 pg/mL for FV), highly specific and ideally accurate. More importantly, it is universal and can be used to detect both non-membrane and membrane proteins in exosome. Besides, the method can be successfully applied to detect SAA1 and FV in plasma exosomes to differentiate between lung cancer patients and healthy individuals. To explore the application of the developed method in tumor diagnosis, a deep learning model based on the expressions of SAA1 and FV was developed. The accuracy of this model can achieve 86.96%, which proves that it has a promising practical application capacity. Thus, this study does not only provide a new tool for the detection of exosomal proteins and cancer diagnosis, but also propose a new strategy to detect non-nucleic acid analytes for CRISPR-Cas system.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121967, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36274535

RESUMO

Ferritin plays an important role in regulating the homeostasis of iron in cells by storing/releasing iron. Current methods usually explored the determination of iron content, but in-situ imaging of the iron storage/release from ferritin in cells cannot be achieved. Hence, an engineered self-assembled biomimetic-compartmented nanoprobe (APO@CDs) has been constructed. The protein shell of APO (apoferritin) acted as ion channel module to control iron ions entering/exiting ferritin cavity; the inner core of CDs (carbon dots) acted as signal module for iron ions response. Compared with CDs, the response sensitivity and specificity to iron ions (Fe3+) have been improved by using APO@CDs, and the cytotoxicity was significantly reduced. Additionally, compared with cells containing APO@CDs alone, the normalized fluorescence gray value of Fe3+-treated cells was significantly decreased (0.275), indicating that Fe3+ has effectively entered the ferritin. Furtherly, that of Fe3+-treated cells incubated with deferoxamine (DFO) was significantly enhanced (0.712), showing that Fe3+ was released from ferritin under the mediation of DFO. The results demonstrate that APO@CDs can be successfully applied to in-situ imaging of iron storage/release from ferritin in cells, providing a potential platform for the in-situ dynamic study of the iron storage/release in biomedical field.


Assuntos
Ferritinas , Ferro , Ferro/metabolismo , Biomimética , Carbono/metabolismo , Fluorescência
9.
Talanta ; 243: 123377, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325744

RESUMO

Recently, using nanomaterials to enhance the endocytosis capability and sensitivity of probes for RNA imaging in living cells has gotten the attention of many researchers. Nanomaterials, as a reliable alternative to transfection reagents, could prevent nucleic acid probes from being degraded by DNase, and bring them into sub-cellular locations for efficient internalization. Therefore, nanomaterial-based fluorescent probes (NFPs) provide a promising sensing platform to realize in situ RNA detection and imaging, which can reveal the expression of RNA at single cell level and provide large amount of information about RNA spatial localization. Meanwhile, many RNAs are in low abundance in living cells, resulting in difficulty in sensitive detection. Thus, the incorporation of NFPs and signal amplification strategy offers a broader prospect for the detection of RNAs, that have been proven as predominant therapeutic targets or diagnostic biomarkers. Herein, the purpose of our review is to first introduce the general procedure of NFPs used for in situ RNA imaging and how nanomaterials deliver these probes into living cells. Further, we focused on different kinds of nanomaterials that are mainly used for sensitive detection of RNAs and those in low abundance, through different signal read-out modes.


Assuntos
Corantes Fluorescentes , Nanoestruturas , Endocitose , Fluorescência , RNA/genética
10.
Anal Chim Acta ; 1192: 339321, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057947

RESUMO

This work aimed to develop an ultrasensitive and specific immunosorbent assay for simultaneous detection of double DNA methylation marks. Being considered the most important indicators in disease diagnosis, clinical treatment, and prognosis, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were chosen as the proof-of-concept targets. The described strategy consisted of Phos-tag Biotin anchoring at streptavidin-magnetic nanoparticles, specific immune recognition of anti-5mC antibody and anti-5hmC antibody and labeling of Barcode-antibody, signal amplification of immune PCR and digital PCR machine. Under optimal conditions, the digital immuno-PCR assay showed a board dynamic range from 2.7 × 10-13 mol/L to 2.7 × 10-9 mol/L and the detection limits were 61.7 fmol/L for 5mC, and of 0.111 pmol/L for 5hmC. A 16-fold and 186-fold improvement of LOD were obtained by the proposed approach for 5mC and 5hmC detection compared with real-time immune PCR. The approach also showed ideal specificity, repeatability and stability. The recovery test demonstrated that the digital immuno-PCR assay is a promising platform for the simultaneous determination of the two DNA methylation marks in human serum sample.


Assuntos
5-Metilcitosina , Citosina , 5-Metilcitosina/análogos & derivados , Metilação de DNA , Humanos , Reação em Cadeia da Polimerase
11.
Biosens Bioelectron ; 195: 113661, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592501

RESUMO

Aptamer-based dual recognition strategy, using dual aptamers or the cooperation of aptamers with other recognition elements, can better utilize the advantages of each recognition molecule and increase the design flexibility to effectively overcome the limitations of a single molecule recognition strategy, thereby improving the sensitivity and selectivity and facilitating the regulation of biological process. Hence, this review systematically tracks the construction and application of dual aptamers recognition strategy in the versatile detection of protein biomarkers, pathogenic microorganisms, cancer cells, and the treatment of some diseases and, more importantly, in functional regulation and imaging of cell-surface protein receptors. Then, the cooperation of aptamers with other recognition elements are briefly introduced. Potential challenges facing this field have been highlighted, aiming to expand bioanalytical applications of aptamer-based dual or multiple recognition strategies and meet the growing demand for precision medicine.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Biomarcadores , Proteínas
12.
Anal Chem ; 93(45): 15200-15208, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723514

RESUMO

Exosome concentration and exosomal proteins are regarded as promising cancer biomarkers. Herein, a waxberry-like magnetic bead (magnetic-nanowaxberry) which has huge surface area and strong affinity was synthesized to couple with aptamer for exosome capture and recovery. Subsequently, we developed a fluorescent assay for the sensitive, accurate, and simultaneous quantification of exosome and cancer-related exosomal proteins [epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM)] by using triple-colored probes to recognize EGFR and EpCAM or spontaneously anchor to the lipid bilayer. In this design, the interference of soluble proteins can be avoided due to the dual recognition strategy. Moreover, the lipid-based quantification of exosome concentration can improve the accuracy. Besides, the simultaneous detection mode can save samples and simplify the operation steps. Consequently, the assay shows high sensitivity (the limits of detection are down to 0.96 pg/mL for EGFR, 0.19 pg/mL for EpCAM, and 2.4 × 104 particles/µL for exosome), high specificity, and satisfactory accuracy. More importantly, this technique is successfully used to analyze exosomes in plasma to distinguish cancer patients from healthy individuals. To improve the diagnostic efficacy, the deep learning was used to exploit the potential pattern hidden in data obtained by the proposed method. Also, the accuracy for the intelligent diagnosis of cancer can achieve 96.0%. This study provides a new avenue for developing new biosensors for exosome analysis and intelligent disease diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , Neoplasias , Biomarcadores Tumorais , Aprendizado Profundo , Humanos , Fenômenos Magnéticos
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120020, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119770

RESUMO

DNA (cytosine-5)-methyltransferase1 (DNMT1) is the most abundant DNA methyltransferase in somatic cells, and it plays an important role in the initiation, occurrence, and rehabilitation of tumors. Herein, we developed a novel strategy for the detection of the level of DNMT1 in human plasma using the self-assembled nucleic acid probe signal amplification technology. In this method, the DNMT1 monoclonal antibody (McAbDNMT1) was immobilized on carboxyl magnetic beads to form immunomagnetic beads and then captured DNMT1 specifically. After that, DNMT1 polyclonal antibody (PcAbDNMT1) and biotinylated sheep anti-rabbit IgG (sheep anti rabbit IgG-Biotin) were sequentially added into the system to react with DNMT1 and form biotinylated double antibody sandwich immunomagnetic beads. In the presence of the bridging medium streptavidin, the biotinylated double antibody sandwich immunomagnetic beads would form a complex with biotinylated poly-fluorescein (Biotin-poly FAM), and the fluorescence intensity of the complex was proportional to the concentration of DNMT1. Immunomagnetic beads can capture the target DNMT1 in the sample, and Biotin-poly FAM can realize signal amplification. Using these strategies, we got a linear range of the system for DNMT1 level detection was from 2 nmol/L to 200 nmol/L, and the limit of detection (LOD) was 0.05 nmol/L. The method was successfully applied for the determination of DNMT1 in human plasma with the recovery of 101.3-106.0%. Therefore, this method has the potential for the detection of DNMT1 level in clinical diagnosis.


Assuntos
Biotina , DNA , Animais , Fluoresceína , Limite de Detecção , Coelhos , Ovinos , Estreptavidina
14.
Biosens Bioelectron ; 188: 113337, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030091

RESUMO

A dual-model "on-super off" photoelectrochemical (PEC)/ratiometric electrochemical (EC) biosensor based on signal enhancing and quenching combining three-dimensional (3D) DNA walker strategy was designed for the ultrasensitive and accurate detection of microRNA-224 (miRNA-224). The "signal on" PEC state was achieved by methylene blue labeled hairpin DNA (MB-DNA) for sensitizing CdS QDs. Then numerous transformational ferrocene labeled DNAs (Fc-DNAs) converted by target-induced 3D DNA walker amplification with the help of Ag nanocubes (NCs) label DNA (Ag-DNA) were introduced to open hairpin MB-DNA. Such configuration change would relocate the sensitizer MB and the quencher Fc, whereas energy transfer placed between Ag NCs and CdS QDs, thereby significantly quenching the PEC signal to obtain "super off" state. Meanwhile, these changes resulted in a decreased oxidation peak current of MB (IMB) and an increased that of Fc (IFc). MiRNA-224 was also detected on basis of the dual-signaling EC ratiometric method for complementary PEC detection. Benefiting from different mechanisms and relatively independent signal transduction, this approach not only avoided interference from difficult assembly but also outstandingly increased sensitivity by distance-controllable signal enhancing and quenching strategies. As a result, the detection ranges of 0.1-1000 fM with a low detection limit of 0.019 fM for PEC, and 0.52 to 500 fM with a low detection limit of 0.061 fM for EC, were obtained for miRNA-224, which opens a new avenue for designing numerous elegant biosensors with potential utility in bioanalysis and early disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , DNA , Técnicas Eletroquímicas , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico
15.
Anal Chim Acta ; 1153: 338283, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33714448

RESUMO

An ultrasensitive and selective photoelectrochemical (PEC) biosensor with cathodic background signal was developed for the detection of carcinoembryonic antigen (CEA) based on innovative plasmonic TiO2@Au nanoparticles//CdS quantum dots (TiO2@Au NPs//CdS QDs) photocurrent-direction switching system, coupling with hybridization chain reaction (HCR) for the signal amplification. Firstly, innovative TiO2@Au NPs were successfully fabricated through in situ ascorbic acid-reduction of Au NPs dispersed on TiO2 surface, and TiO2@Au NPs as the photoactive material showed a cathodic background signal. When target CEA existed, a sandwich-type reaction was performed in capture CEA aptamer-modified TiO2@Au NPs and trigger CEA aptamer. Interestingly, after HCR triggered by target CEA, a mass of CdS QDs were introduced into the biosensing platform, resulting in the formation of TiO2@Au NPs//CdS QDs system, along with the switch of photocurrents from cathodic to anodic. The obtained remarkable anodic photocurrent was depended on the localized surface plasmon resonance (LSPR) effect of Au between TiO2 and CdS. Under the optimal conditions, plasmonic TiO2@Au NPs//CdS QDs photocurrent-direction switching PEC biosensing platform with cathodic background signal exhibited ultrasensitive for the determination of CEA with a low limit of detection of 18.9 fg/mL. Importantly, the proposed PEC biosensor can eliminate the interferences of the initial photocurrent and background signal, and has high-efficiency anti-interference ability, satisfactory stability and excellent reproducibility, which may have great potentials in bioanalysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanopartículas Metálicas , Pontos Quânticos , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Reprodutibilidade dos Testes , Sulfetos , Titânio
16.
Analyst ; 146(6): 1924-1931, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33491014

RESUMO

MicroRNAs (miRNAs) encapsulated in tumor-derived exosomes are becoming ideal biomarkers for the early diagnosis and prognosis of lung cancer. However, the accuracy and sensitivity are often hampered by the extraction process of exosomal miRNA using traditional methods. Herein, this study developed a fluorogenic quantitative detection method for exosomal miRNA using the fluorescence quenching properties of molybdenum disulfide (MoS2) nanosheets and the enzyme-assisted signal amplification properties of duplex-specific nuclease (DSN). First, a fluorescently-labeled nucleic acid probe was used to hybridize the target miRNA to form a DNA/RNA hybrid structure. Under the action of the DSN, the DNA single strand in the DNA/RNA hybrid strand was selectively digested into smaller oligonucleotide fragments. At the same time, the released miRNA target triggers the next reaction cycle, so as to achieve signal amplification. Then, MoS2 was used to selectively quench the fluorescence of the undigested probe leaving the fluorescent signal of the fluorescently-labeled probe fragments. The fluorometric signals for miRNA-21 had a maximum excitation/emission wavelength of 488/518 nm. Most importantly, the biosensor was then applied for the accurate quantitative detection of miRNA-21 in exosome lysates extracted from human plasma and this method was able to successfully distinguish lung cancer patients from healthy people. This biosensor provides a simple, rapid, and a highly specific quantitative method for exosomal miRNA and has promising potential to be used in the early diagnosis of lung cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Molibdênio , Técnicas de Amplificação de Ácido Nucleico
17.
Int J Nanomedicine ; 15: 9975-9985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363367

RESUMO

BACKGROUND: As two important tumor markers, vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) have a great value for clinical application in the early diagnosis of cancer. Due to the complex composition of biological samples, the results from combined detection of CEA and VEGF are often taken as a comprehensive indicator in order to make an accurate judgment on a disease. However, most of the current methods can only be used to detect the content of one biomarker. Therefore, it is necessary to explore a simple, rapid, low-cost, and highly sensitive method for the simultaneous detection of CEA and VEGF. METHODS: Based on specific aptamers and magnetic separation, a time-resolved chemiluminescence enzyme-linked aptamer assay was developed for the simultaneous detections of CEA and VEGF in serum samples. RESULTS: Under the optimal conditions, the linear range of the calibration curve for VEGF was from 0.5 to 80 ng mL-1, and the limit of detection was 0.1 ng mL-1. The linear range of the calibration curve for CEA was 0.5 to 160 ng mL-1, and the limit of detection was 0.1 ng mL-1. The established method was applied to detect VEGF and CEA in serum samples. The results were consistent with those of commercial kits. CONCLUSION: The method has high sensitivity and can quickly obtain accurate results, which could greatly improve the measurement efficiency, reduce the cost, and also reduce the volume of sample consumed. It can be seen that the method established in this study has important application value and broad application prospect in clinical diagnosis.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Antígeno Carcinoembrionário/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Medições Luminescentes , Fator A de Crescimento do Endotélio Vascular/sangue , Fosfatase Alcalina/metabolismo , Biocatálise , Calibragem , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Cinética , Medições Luminescentes/métodos , Fenômenos Magnéticos , Fatores de Tempo
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118546, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32505107

RESUMO

In this paper, a label-free fluorescence nanoprobe is constructed based on poly(thymine) single strand DNA-templated Copper nanocluster (denote as: T-CuNCs) for the detection of hydrogen peroxide. In the assay, the fluorescent T-CuNCs will generate though the reaction of Cu2+, poly(thymine) and sodium ascorbate. However, the hydroxyl radical (.OH) will generated in the presence of H2O2, which is able to induced the oxidative lesions of poly(thymine) single chain DNA and lead to the poly(thymine) being splitted into shorter or single oligonucleotide fragments and lose the ability to template the fluorescent T-CuNCs again. Therefore, H2O2 can be detected by monitoring the fluorescence strength change of T-CuNCs. The experimental results show that the fluorescence intensity change of T-CuNCs has fantastic linearity versus H2O2 concentration in the range of 1-30 µM (R2 = 0.9947) and 30-80 µM (R2 = 0.9972) with the limit of detection (LOD) as low as 0.5 µM (S/N = 3). More important, the fluorescent nanoprobe was also successfully utilized on the detection of H2O2 in serum samples. Therefore, a label-free, costless and effective fluorescence method has been established for the detection of H2O2, the intrinsic properties of the nanoprobe endow its more potential applications in chemical and biological study.


Assuntos
Cobre , Nanopartículas Metálicas , DNA , Corantes Fluorescentes , Peróxido de Hidrogênio , Espectrometria de Fluorescência , Timina
19.
Mikrochim Acta ; 187(3): 171, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062798

RESUMO

A method is described for the simultaneous determination of the carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA21-1). Two kinds of CdSe/ZnS quantum dot nanobeads (QBs), with emission maxima at 530 nm (green) and 585 nm (yellow), were used as labels, and magnetic beads (MBs) for separation. The MBs were used as substrates to couple CEA and CYFRA21-1 antibody for isolating the proteins. Then, the differently colored QBs were linked to the antibodies against CEA and CYFRA21-1, respectively. Following the formation of the immunocomplex, the intensities of the green and yellow emissions were measured at the same excitation wavelength of 340 nm. The detection limits are 0.1 ng⋅mL- 1 for CEA, and of 0.2 ng⋅mL- 1 for CYFRA21-1. The recoveries from spiked serum are 92.1 - 118.1% for CEA, and from 90.8% to 115.2% for CYFRA21-1, with the relative standard deviations of 6.3 - 12.3% and 7.1 - 11.8%. The method was successfully applied to the simultaneous determination of the two proteins in human serum sample (n = 45). The results correlated well with those of the chemiluminescent enzyme immunoassay kit. Graphical AbstractSchematic presentation of the fluorescence immunoassay for the simultaneous determination of carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA21-1) based on quantum dot nanobeads (QBs) and magnetic beads (MBs) is reported. The intensities of two kinds of CdSe/ZnS QBs, with the emission maxima at 530 nm (green) and 585 nm (yellow) were measured at the same excitation wavelength of 340 nm.


Assuntos
Biomarcadores Tumorais/sangue , Compostos de Cádmio/química , Antígeno Carcinoembrionário/química , Fluorometria/métodos , Imunoensaio/métodos , Queratina-19/química , Pontos Quânticos/química , Sulfetos/química , Compostos de Zinco/química , Humanos , Fenômenos Magnéticos
20.
ACS Sens ; 5(2): 440-446, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31910612

RESUMO

In this study, an interesting phenomenon was found where cells (including tumor and normal cells) managed to significantly enhance chemiluminescence (CL) signals. The possible reaction mechanism may be that cells can be severely damaged by CL substrates, and the released contents, possibly proteins (such as cytochrome c), can remarkably magnify CL owing to the increased production of singlet oxygen. More importantly, based on the above phenomena, a novel cell-assisted enhanced CL strategy was proposed for the rapid and label-free detection of tumor cells. The complexes of aptamer sgc8c and streptavidin-modified magnetic beads were employed to recognize and isolate target tumor cells from whole blood. The enhanced CL intensity, which was triggered directly by the captured cells, was measured. The proposed strategy exhibited a good detection performance with a linear range from 200 to 10,000 cells/mL. The analysis can be finished in ∼30 min, and the limit of detection was down to 100 cells/mL. The recoveries and relative standard deviations were 97.81-102.71% and 3.46-12.71%, respectively. Moreover, the established method can successfully distinguish the leukemia patients from healthy people. Therefore, it provides a novel, rapid, and simple method for the determination of tumor cells, which can be used in further practice.


Assuntos
Células Sanguíneas/patologia , Células Tumorais Cultivadas/química , Células Sanguíneas/citologia , Humanos , Medições Luminescentes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA