Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Asian J Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729876
2.
ACS Nano ; 18(19): 12377-12385, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701373

RESUMO

Two-dimensional electronic materials are a promising candidate for beyond-silicon electronics due to their favorable size scaling of electronic performance. However, a major challenge is the heterogeneous integration of 2D materials with CMOS processes while maintaining their excellent properties. In particular, there is a knowledge gap in how thin film deposition and processes interact with 2D materials to alter their strain and doping, both of which have a drastic impact on device properties. In this study, we demonstrate how to utilize process-induced strain, a common technique extensively applied in the semiconductor industry, to enhance the carrier mobility in 2D material transistors. We systematically varied the tensile strain in monolayer MoS2 transistors by iteratively depositing thin layers of high-stress MgOx stressor. At each thickness, we combined Raman spectroscopy and transport measurements to unravel and correlate the changes in strain and doping within each transistor with their performance. The transistors displayed uniform strain distributions across their channels for tensile strains of up to 0.48 ± 0.05%, at 150 nm of stressor thickness. At higher thicknesses, mechanical instability occurred, leading to nonuniform strains. The transport characteristics systematically varied with strain, with enhancement in electron mobility at a rate of 130 ± 40% per % strain and enhancement of the channel saturation current density of 52 ± 20%. This work showcases how established CMOS technologies can be leveraged to tailor the transport in 2D transistors, accelerating the integration of 2D electronics into a future computing infrastructure.

3.
Pest Manag Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775471

RESUMO

BACKGROUND: Tetranychus cinnabarinus is one of the most common polyphagous arthropod herbivores, and is primarily controlled by the application of acaricides. The heavy use of acaricides has led to high levels of resistance to acaricides such as cyflumetofen, which poses a threat to global resistance management programs. Cyflumetofen resistance is caused by an increase in metabolic detoxification; however, the role of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes in cyflumetofen resistance remains to be determined. RESULTS: Synergist 5-nitrouracil (5-Nul) significantly enhanced cyflumetofen toxicity in T. cinnabarinus, which indicated that UGTs are involved in the development of cyflumetofen resistance. Transcriptomic analysis and quantitative (q)PCR assays demonstrated that the UGT genes, especially UGT201H1, were highly expressed in the YN-CyR strain, compared to those of the YN-S strain. The RNA interference (RNAi)-mediated knockdown of UGT201H1 expression diminished the levels of cyflumetofen resistance in YN-CyR mites. The findings additionally revealed that the recombinant UGT201H1 protein plays a role in metabolizing cyflumetofen. Our results also suggested that the aromatic hydrocarbon receptor (AhR) probably regulates the overexpression of the UGT201H1 detoxification gene. CONCLUSION: UGT201H1 is involved in cyflumetofen resistance, and AhR may regulates the overexpression of UGT201H1. These findings provide deeper insights into the molecular mechanisms underlying UGT-mediated metabolic resistance to chemical insecticides. © 2024 Society of Chemical Industry.

4.
J Hazard Mater ; 472: 134477, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703682

RESUMO

Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.

5.
Front Endocrinol (Lausanne) ; 15: 1336787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699389

RESUMO

Objectives: To investigate the association between contrast-enhanced ultrasound (CEUS) features of PTC and central lymph node metastasis (CLNM) and to develop a predictive model for the preoperative identification of CLNM. Methods: This retrospective study evaluated 750 consecutive patients with PTC from August 2020 to April 2023. Conventional ultrasound and qualitative CEUS features were analyzed for the PTC with or without CLNM using univariate and multivariate logistic regression analysis. A nomogram integrating the predictors was constructed to identify CLNM in PTC. The predictive nomogram was validated using a validation cohort. Results: A total of 684 patients were enrolled. The 495 patients in training cohort were divided into two groups according to whether they had CLNM (pCLNM, n= 191) or not (nCLNM, n= 304). There were significant differences in terms of tumor size, shape, echogenic foci, enhancement direction, peak intensity, and score based on CEUS TI-RADS between the two groups. Independent predictive US features included irregular shape, larger tumor size (≥ 1.0cm), and score. Nomogram integrating these predictive features showed good discrimination and calibration in both training and validation cohort with an AUC of 0.72 (95% CI: 0.68, 0.77) and 0.79 (95% CI: 0.72, 0.85), respectively. In the subgroup with larger tumor size, age ≤ 35 years, irregular shape, and score > 6 were independent risk factors for CLNM. Conclusion: The score based on preoperative CEUS features of PTC may help to identify CLNM. The nomogram developed in this study provides a convenient and effective tool for clinicians to determine an optimal treatment regimen for patients with PTC.


Assuntos
Meios de Contraste , Metástase Linfática , Nomogramas , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Ultrassonografia , Humanos , Feminino , Masculino , Ultrassonografia/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Metástase Linfática/diagnóstico por imagem , Adulto , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Idoso
6.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556862

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Assuntos
Antraquinonas , Compostos Azo , Osteogênese , Células-Tronco , Humanos , Osteogênese/fisiologia , Células-Tronco/metabolismo , Polpa Dentária , Proliferação de Células , Diferenciação Celular , Células Cultivadas , Histona Acetiltransferases/metabolismo
7.
Angew Chem Int Ed Engl ; : e202401311, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606491

RESUMO

Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.

8.
J Cardiothorac Surg ; 19(1): 194, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594687

RESUMO

BACKGROUND: Primary cardiac angiosarcoma(PCA) has a low incidence rate and poor prognosis. Currently, no unified clinical treatment standards are available. CASE PRESENTATION: We report the case of a 48-year-old man presenting chest tightness, breathlessness, and dyspnea. Imaging and postoperative histopathologic studies confirmed PCA and that the tumor had invaded the entire right atrium. The patient developed progressive disease (PD) during postoperative radiotherapy. We used immunotherapy combined with targeted therapy based on the results of molecular profile and evaluation of tertiary lymphoid structures (TLSs) and programmed cell death-ligand 1 (PD-L1). After treatment, the metastatic lymph nodes of the patient were reduced to a certain extent, indicating that combination therapy was effective. CONCLUSION: To the best of our knowledge, this is the first report of radiotherapy combined with anti-PD-1 and tyrosine kinase inhibitors(TKI) for PCA. In addition, this is the first report on immunotherapy for PCA based on new evaluation methods, including TLSs, PD-L1, and genomic profile.


Assuntos
Hemangiossarcoma , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Masculino , Humanos , Pessoa de Meia-Idade , Antígeno B7-H1 , Hemangiossarcoma/diagnóstico , Hemangiossarcoma/terapia , Neoplasias Pulmonares/patologia
9.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689280

RESUMO

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Assuntos
Fibroblastos , Fibrose , Miofibroblastos , Proteínas Proto-Oncogênicas c-abl , Receptores de Quinase C Ativada , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Humanos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Rim/patologia , Rim/metabolismo , Masculino , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
10.
Biology (Basel) ; 13(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666856

RESUMO

Soil salinization is one of the leading threats to global ecosystems, food security, and crop production. Plant growth-promoting rhizobacteria (PGPRs) are potential bioinoculants that offer an alternative eco-friendly agricultural approach to enhance crop productivity from salt-deteriorating lands. The current work presents bacterial strain CNUC13 from maize rhizosphere soil that exerted several PGPR traits and abiotic stress tolerance. The strain tolerated up to 1000 mM NaCl and 30% polyethylene glycol (PEG) 6000 and showed plant growth-promoting (PGP) traits, including the production of indole-3-acetic acid (IAA) and siderophore as well as phosphate solubilization. Phylogenetic analysis revealed that strain CNUC13 was Microbacterium azadirachtae. Maize plants exposed to high salinity exhibited osmotic and oxidative stresses, inhibition of seed germination, plant growth, and reduction in photosynthetic pigments. However, maize seedlings inoculated with strain CNUC13 resulted in significantly improved germination rates and seedling growth under the salt-stressed condition. Specifically, compared with the untreated control group, CNUC13-treated seedlings exhibited increased biomass, including fresh weight and root system proliferation. CNUC13 treatment also enhanced photosynthetic pigments (chlorophyll and carotenoids), reduced the accumulation of osmotic (proline) and oxidative (hydrogen peroxide and malondialdehyde) stress indicators, and positively influenced the activities of antioxidant enzymes (catalase, superoxide dismutase, and peroxidase). As a result, CNUC13 treatment alleviated oxidative stress and promoted salt tolerance in maize. Overall, this study demonstrates that M. azadirachtae CNUC13 significantly enhances the growth of salt-stressed maize seedlings by improving photosynthetic efficiency, osmotic regulators, oxidative stress resilience, and antioxidant enzyme activity. These findings emphasize the potential of utilizing M. azadirachtae CNUC13 as a bioinoculant to enhance salt stress tolerance in maize, providing an environmentally friendly approach to mitigate the negative effects of salinity and promote sustainable agriculture.

11.
Nat Commun ; 15(1): 3546, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670960

RESUMO

Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains challenging. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularities, and result in robust single-wavefront dislocations in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes.

12.
J Biophotonics ; : e202400015, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613161

RESUMO

Pollution from toxic spores has caused us a lot of problems because spores are extremely resistant and can survive most disinfectants. Therefore, the detection of spore response to disinfectant is of great significance for the development of effective decontamination strategies. In this work, we investigated the effect of 0.5% sodium hypochlorite on the molecular and morphological properties of single spores of Bacillus subtilis using single-cell techniques. Laser tweezers Raman spectroscopy showed that sodium hypochlorite resulted in Ca2+-dipicolinic acid release and nucleic acid denaturation. Atomic force microscopy showed that the surface of treated spores changed from rough to smooth, protein shells were degraded at 10 min, and the permeability barrier was destroyed at 15 min. The spore volume decreased gradually over time. Live-cell imaging showed that the germination and growth rates decreased with increasing treatment time. These results provide new insight into the response of spores to sodium hypochlorite.

13.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634322

RESUMO

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

14.
Front Microbiol ; 15: 1371855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550864

RESUMO

Mariculture wastewater poses environmental challenges due to pollution and eutrophication. Targeted cultivation of diatoms in wastewater can help alleviate these issues while generating beneficial algae biomass, however reliable operating methods are lacking. We proposed a novel method for treating mariculture wastewater that employed UV-C irradiation and nutrient regulation to achieve targeted diatom cultivation. This study first examined growth of four diatom species (Nitzschia closterium, Chaetoceros muelleri, Cyclotella atomus, and Conticribra weissflogii) in mariculture wastewater. C. muelleri and C. weissflogii demonstrated better adaptability compared to N. closterium and C. atomus. Additionally, the growth and nutrient utilization of C. muelleri were studied under varying concentrations of silicate, phosphate, ammonium, and trace elements in wastewater. Optimal growth was observed at 500 µmol/L silicate, 0.6 mg/L phosphate, and 4 mg/L ammonium. Ammonium proved to be a more effective nitrogen source than urea and nitrate in promoting growth at this low level. Surprisingly, trace element supplementation did not significantly impact growth. Finally, this study utilized UV-C irradiation as a pre-treatment method for wastewater prior to nutrient adjustment, significantly enhancing the growth of C. muelleri. Overall, this study provides guidance on regulating key nutrients and pre-treatment method to optimize diatom biomass production from mariculture wastewater. This approach not only addresses environmental challenges associated with mariculture but also contributes to sustainable aquaculture practices through the recovery of valuable aquatic resources.

16.
JMIR Public Health Surveill ; 10: e47165, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502181

RESUMO

BACKGROUND: The worldwide human monkeypox (mpox) outbreak in 2022 mainly affected men who have sex with men (MSM). In China, young men who have sex with men (YMSM) were at a potential high risk of mpox infection due to their sexual activeness and the eased COVID-19 restrictions at the end of 2022. OBJECTIVE: This study aimed to investigate the behavioral intention of receiving mpox vaccination and undergoing mpox testing in 4 different scenarios and explore their associations with background and behavioral theory-related factors among Chinese YMSM. METHODS: An online cross-sectional survey was conducted among YMSM aged 18-29 years from 6 representative provinces of China in September 2022. Participants recruited (recruitment rate=2918/4342, 67.2%) were asked to self-administer an anonymous questionnaire designed based on prior knowledge about mpox and classic health behavior theories. Data on the participants' background, mpox knowledge and cognition, mpox vaccination and testing cognition, and the behavioral intention of receiving mpox vaccination and undergoing mpox testing were collected. Descriptive analysis and univariate and multivariate linear regressions were performed. Geodetector was used to measure the stratified heterogeneity of behavioral intention. RESULTS: A total of 2493 YMSM with a mean age of 24.6 (SD 2.9) years were included. The prevalence of having a behavioral intention of receiving mpox vaccination ranged from 66.2% to 88.4% by scenario, varying in epidemic status and cost. The prevalence of having an mpox testing intention was above 90% in all scenarios regardless of the presence of symptoms and the cost. The positive factors related to vaccination intention included mpox knowledge (ba=0.060, 95% CI 0.016-0.103), perceived susceptibility of mpox (ba=0.091, 95% CI 0.035-0.146), perceived severity of mpox (ba=0.230, 95% CI 0.164-0.296), emotional distress caused by mpox (ba=0.270, 95% CI 0.160-0.380), perceived benefits of mpox vaccination (ba=0.455, 95% CI 0.411-0.498), self-efficacy of mpox vaccination (ba=0.586, 95% CI 0.504-0.668), and having 1 male sex partner (ba=0.452, 95% CI 0.098-0.806), while the negative factor was perceived barriers to vaccination (ba=-0.056, 95% CI -0.090 to -0.022). The positive factors related to testing intention were perceived severity of mpox (ba=0.283, 95% CI 0.241-0.325), perceived benefits of mpox testing (ba=0.679, 95% CI 0.636-0.721), self-efficacy of mpox testing (ba=0.195, 95% CI 0.146-0.245), having 1 male sex partner (ba=0.290, 95% CI 0.070-0.510), and having in-person gatherings with MSM (ba=0.219, 95% CI 0.072-0.366), while the negative factor was emotional distress caused by mpox (ba=-0.069, 95% CI -0.137 to -0.001). CONCLUSIONS: Among Chinese YMSM, the intention of undergoing mpox testing is optimal, while the mpox vaccination intention has room for improvement. A future national response should raise YMSM's mpox knowledge, disseminate updated information about mpox and preventive measures, improve preventive service accessibility and privacy, and provide advice on positively coping with the associated emotional distress.


Assuntos
Técnicas de Laboratório Clínico , Mpox , Minorias Sexuais e de Gênero , Vacina Antivariólica , Masculino , Humanos , Adulto Jovem , Adulto , Homossexualidade Masculina , Estudos Transversais , Intenção , China/epidemiologia
17.
Chem Biodivers ; 21(4): e202400244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426640

RESUMO

Five new compounds (1, 2, 7, 12, and 16), along with fifteen known ones, were isolated from Ajuga lupulina Maxim. Their structures were revealed by analysing spectroscopic data (MS, NMR), and experimental and calculated ECD spectra was used to deduce the absolute configuration. Compound 16, with eight carbon atoms, was firstly isolated from the nature. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis in HT22 mouse hippocampal neuronal cells. Among them, the abietane-type diterpenoids (7-11) significantly inhibited ferroptosis with EC50 values of 0.83 µM, 2.05 µM, 0.96 µM, 1.47 µM, and 1.19 µM, respectively.


Assuntos
Ajuga , Ferroptose , Animais , Camundongos , Estrutura Molecular , Ajuga/química , Abietanos/química , Espectroscopia de Ressonância Magnética
18.
Hum Cell ; 37(3): 593-606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538930

RESUMO

Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.


Assuntos
Neoplasias , Humanos , Estresse Mecânico , Neoplasias/genética , Neoplasias/patologia , Carcinogênese , Canais Iônicos/genética , Temperatura Baixa
19.
Sci Total Environ ; 926: 171907, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522548

RESUMO

Traditional risk assessments of chiral pesticides mainly depend on racemic form, which is often incomprehensive. This study conducted systemic investigations on the bioactivity, toxicity, and ecotoxicological effects of hexythiazox (HTZ) at the enantiomer level. The elution order and absolute configuration of HTZ enantiomers were determined. (4R, 5R)-(+)-HTZ exhibited 708 and 1719 times higher bioactivity against Tetranychus cinnabarinus and Tetranychus urticae eggs than (4S, 5S)-(-)-HTZ, respectively. Molecular docking indicated greater interactions between (4R, 5R)-(+)-HTZ and chitin synthase leading to higher bioactivity of (4R, 5R)-(+)-HTZ. However, (4S, 5S)-(-)-HTZ induced greater changes in protein and malondialdehyde content, and antioxidant and detoxification enzyme activities than (4R, 5R)-(+)-HTZ in earthworms. Furthermore, integrated biomarker response results indicated (4S, 5S)-(-)-HTZ exhibited higher toxic effects on earthworms than (4R, 5R)-(+)-HTZ. Finally, significant differentially expressed genes (DEGs) were observed in earthworms after exposure to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ, respectively. These DEGs were mainly enriched in glycolysis/gluconeogenesis and purine metabolism pathways in earthworms. Additionally, six metabolism pathways were also enriched, including pyruvate metabolism, fatty acid biosynthesis, oxidative phosphorylation, citric acid cycle, fatty acid degradation, and ATP-binding cassette transporters. These findings suggest that earthworms exhibited enantiomer-specific responses to (4R, 5R)-(+)-HTZ and (4S, 5S)-(-)-HTZ. This study provides systemic insight into the toxicity mechanism of HTZ at the enantiomer level and the potential to develop (4R, 5R)-(+)-HTZ as a high-efficiency and low-risk pesticide.


Assuntos
Acaricidas , Praguicidas , Tiazolidinas , Acaricidas/toxicidade , Simulação de Acoplamento Molecular , Praguicidas/toxicidade , Comportamento de Redução do Risco , Ácidos Graxos , Estereoisomerismo
20.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA