Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nat Commun ; 15(1): 6802, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122688

RESUMO

Influenza virus infection remains a major global health problem and requires a universal vaccine with broad protection against different subtypes as well as a rapid-response vaccine to provide immediate protection in the event of an epidemic outbreak. Here, we show that intranasal administration of probiotic Escherichia coli Nissle 1917 activates innate immunity in the respiratory tract and provides immediate protection against influenza virus infection within 1 day. Based on this vehicle, a recombinant strain is engineered to express and secret five tandem repeats of the extracellular domain of matrix protein 2 from different influenza virus subtypes. Intranasal vaccination with this strain induces durable humoral and mucosal responses in the respiratory tract, and provides broad protection against the lethal challenge of divergent influenza viruses in female BALB/c mice. Our findings highlight a promising delivery platform for developing mucosal vaccines that provide immediate and sustained protection against respiratory pathogens.


Assuntos
Administração Intranasal , Escherichia coli , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Probióticos , Animais , Escherichia coli/genética , Probióticos/administração & dosagem , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Imunidade Inata , Imunidade nas Mucosas , Humanos , Anticorpos Antivirais/imunologia , Proteínas Viroporinas
2.
PeerJ ; 12: e17706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006021

RESUMO

Objectives: To evaluate the efficacy of peri-trigger female reproductive hormones (FRHs) in the prediction of oocyte maturation in normal ovarian reserve patients during the in vitro fertilization-embryo transfer (IVF-ET) procedure. Materials and Methods: A hospital database was used to extract data on IVF-ET cases from January 2020 to September 2021. The levels of female reproductive hormones, including estradiol (E2), luteinizing hormone (LH), progesterone (P), and follicle-stimulating hormone (FSH), were initially evaluated at baseline, the day of the trigger, the day after the trigger, and the day of oocyte retrieval. The relative change in E2, LH, P, FSH between time point 1 (the day of trigger and baseline) and time point 2 (the day after the trigger and day on the trigger) was defined as E2_RoV1/2, LH_RoV1/2, P_RoV1/2, and FSH_RoV1/2, respectively. Univariable and multivariable regression were performed to screen the peri-trigger FRHs for the prediction of oocyte maturation. Results: A total of 118 patients were enrolled in our study. Univariable analysis revealed significant associations between E2_RoV1 and the rate of MII oocytes in the GnRH-agonist protocol group (p < 0.05), but not in the GnRH-antagonist protocol group. Conversely, P_RoV2 emerged as a potential predictor for the rate of MII oocytes in both protocol groups (p < 0.05). Multivariable analysis confirmed the significance of P_RoV2 in predicting oocyte maturation rate in both groups (p < 0.05), while the association of E2_RoV1 was not significant in either group. However, within the subgroup of high P_RoV2 in the GnRH-agonist protocol group, association was not observed to be significant. The C-index was 0.83 (95% CI [0.73-0.92]) for the GnRH-agonist protocol group and 0.77 (95% CI [0.63-0.90]) for the GnRH-antagonist protocol group. The ROC curve analysis further supported the satisfactory performance of the models, with area under the curve (AUC) values of 0.79 for the GnRH-agonist protocol group and 0.81 for the GnRH-antagonist protocol group. Conclusions: P_RoV2 showed significant predictive value for oocyte maturation in both GnRH-agonist and GnRH-antagonist protocol groups, which enhances the understanding of evaluating oocyte maturation and inform individualized treatment protocols in controlled ovarian hyperstimulation during IVF-ET for normal ovarian reserve patients.


Assuntos
Transferência Embrionária , Estradiol , Fertilização in vitro , Hormônio Foliculoestimulante , Hormônio Luteinizante , Reserva Ovariana , Indução da Ovulação , Progesterona , Humanos , Feminino , Adulto , Estudos Retrospectivos , Fertilização in vitro/métodos , Reserva Ovariana/efeitos dos fármacos , Reserva Ovariana/fisiologia , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Transferência Embrionária/métodos , Progesterona/sangue , Indução da Ovulação/métodos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Gravidez , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Recuperação de Oócitos/métodos
3.
Sci Rep ; 14(1): 16728, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030237

RESUMO

The agriculture Internet of Things (IoT) has been widely applied in assisting pear farmers with pest and disease prediction, as well as precise crop management, by providing real-time monitoring and alerting capabilities. To enhance the effectiveness of agriculture IoT monitoring applications, clustering protocols are utilized in the data transmission of agricultural wireless sensor networks (AWSNs). However, the selection of cluster heads is a NP-hard problem, which cannot be solved effectively by conventional algorithms. Based on this, This paper proposes a novel AWSNs clustering model that comprehensively considers multiple factors, including node energy, node degree, average distance and delay. Furthermore, a novel high-performance cluster protocol based on Gaussian mutation and sine cosine firefly algorithm (GSHFA-HCP) is proposed to meet the practical requirements of different scenarios. The innovative Gaussian mutation strategy and sine-cosine hybrid strategy are introduced to optimize the clustering scheme effectively. Additionally, an efficient inter-cluster data transmission mechanism is designed based on distance between nodes, residual energy, and load. The experimental results show that compared with other four popular schemes, the proposed GSHFA-HCP protocol has significant performance improvement in reducing network energy consumption, extending network life and reducing transmission delay. In comparison with other protocols, GSHFA-HCP achieves optimization rates of 63.69%, 17.2%, 19.56%, and 35.78% for network lifespan, throughput, transmission delay, and packet loss rate, respectively.

4.
Arch Esp Urol ; 77(4): 322-330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38840273

RESUMO

High intensity focused ultrasound (HIFU), also referred to as focused ultrasound surgery (FUS), has garnered recent attention as a non-invasive therapeutic strategy for prostate cancer. It utilizes focused acoustic energy to achieve localized thermal ablation, while also potentially exerting immunomodulatory effects. This review aims to elucidate the mechanisms underlying how HIFU influences tumor-specific immune responses in prostate cancer. These mechanisms include the release of tumor-associated antigens and damage-associated molecular patterns, the activation of innate immune cells, the facilitation of antigen presentation to adaptive immune cells, the enhancement of activation and proliferation of tumor-specific cytotoxic T lymphocytes, and the attenuation of the immunosuppressive tumor microenvironment by reducing the activity of regulatory T cells and myeloid-derived suppressor cells. Both preclinical investigations and emerging clinical data in prostate cancer models highlight HIFU's potential to modulate the immune system, as evidenced by increased infiltration of effector immune cells, elevated levels of pro-inflammatory cytokines, and improved responsiveness to immune checkpoint inhibitors. HIFU induces immunogenic cell death, leading to the release of tumor antigens and danger signals that activate dendritic cells and facilitate cross-presentation to cytotoxic T cells. Additionally, FUS ablation reduces immunosuppressive cells and increases infiltration of CD8+ T cells into the tumor, reshaping the tumor microenvironment. By priming the immune system while overcoming immunosuppression, combining FUS with other immunotherapies like checkpoint inhibitors and cancer vaccines holds promise for synergistic anti-tumor effects. Despite challenges in optimizing parameters and identifying suitable patients, FUS represents a novel frontier by modulating the tumor microenvironment and enhancing anti-tumor immunity through a non-invasive approach.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias da Próstata , Neoplasias da Próstata/terapia , Neoplasias da Próstata/imunologia , Masculino , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Microambiente Tumoral/imunologia
5.
Front Chem ; 12: 1417763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887698

RESUMO

Introduction: Facial nerve injury significantly impacts both the physical and psychological] wellbeing of patients. Despite advancements, there are still limitations associated with autografts transplantation. Consequently, there is an urgent need for effective artificial grafts to address these limitations and repair injuries. Recent years have witnessed the recognition of the beneficial effects of chitosan (CS) and graphene in the realm of nerve repair. Dental pulp stem cells (DPSCs) hold great promise due to their high proliferative and multi-directional differentiation capabilities. Methods: In this study, Graphene/CS (G/CST) composite tubes were synthesized and their physical, chemical and biological properties were evaluated, then DPSCs were employed as seed cells and G/CST as a scaffold to investigate their combined effect on promoting facial nerve injury repair. Results and Disscussion: The experimental results indicate that G/CST possesses favorable physical and chemical properties, along with good cyto-compatibility. making it suitable for repairing facial nerve transection injuries. Furthermore, the synergistic application of G/CST and DPSCs significantly enhanced the repair process for a 10 mm facial nerve defect in rabbits, highlighting the efficacy of graphene as a reinforcement material and DPSCs as a functional material in facial nerve injury repair. This approach offers an effective treatment strategy and introduces a novel concept for clinically managing facial nerve injuries.

6.
BMC Bioinformatics ; 25(1): 91, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429654

RESUMO

BACKGROUND: Uncovering functional genetic variants from an allele-specific perspective is of paramount importance in advancing our understanding of gene regulation and genetic diseases. Recently, various allele-specific events, such as allele-specific gene expression, allele-specific methylation, and allele-specific binding, have been explored on a genome-wide scale due to the development of high-throughput sequencing methods. RNA secondary structure, which plays a crucial role in multiple RNA-associated processes like RNA modification, translation and splicing, has emerged as an essential focus of relevant research. However, tools to identify genetic variants associated with allele-specific RNA secondary structures are still lacking. RESULTS: Here, we develop a computational tool called 'AStruct' that enables us to detect allele-specific RNA secondary structure (ASRS) from RT-stop based structuromic probing data. AStruct shows robust performance in both simulated datasets and public icSHAPE datasets. We reveal that single nucleotide polymorphisms (SNPs) with higher AStruct scores are enriched in coding regions and tend to be functional. These SNPs are highly conservative, have the potential to disrupt sites involved in m6A modification or protein binding, and are frequently associated with disease. CONCLUSIONS: AStruct is a tool dedicated to invoke allele-specific RNA secondary structure events at heterozygous SNPs in RT-stop based structuromic probing data. It utilizes allelic variants, base pairing and RT-stop information under different cell conditions to detect dynamic and functional ASRS. Compared to sequence-based tools, AStruct considers dynamic cell conditions and outperforms in detecting functional variants. AStruct is implemented in JAVA and is freely accessible at: https://github.com/canceromics/AStruct .


Assuntos
Regulação da Expressão Gênica , RNA , RNA/genética , RNA/química , Alelos , Splicing de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Physiol Plant ; 176(2): e14248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488424

RESUMO

The Chinese tallow tree (Triadica sebifera) is an economically important plant on account of its ornamental value and oil-producing seeds. Leaf colour is a key characteristic of T. sebifera, with yellow-, red- and purple-leaved varieties providing visually impressive displays during autumn. In this study, we performed metabolomic and transcriptomic analyses to gain a better understanding of the mechanisms underlying leaf colour development in purple-leaved T. sebifera at three stages during the autumnal colour transition, namely, green, hemi-purple, and purple leaves. We accordingly detected 370 flavonoid metabolites and 10 anthocyanins, among the latter of which, cyanidin-3-xyloside and peonidin-3-O-glucoside were identified as the predominant compounds in hemi-purple and purple leaves. Transcriptomic analysis revealed that structural genes associated with the anthocyanin biosynthetic pathway, chlorophyll synthesis pathway and carotenoid synthesis pathway were significantly differential expressed at the three assessed colour stages. Additionally, transcription factors associated with the MYB-bHLH-WD40 complex, including 22 R2R3-MYBs, 79 bHLHs and 44 WD40 genes, were identified as candidate regulators of the anthocyanin biosynthetic pathway. Moreover, on the basis of the identified differentially accumulated anthocyanins and key genes, we generated genetic and metabolic regulatory networks for anthocyanin biosynthesis in T. sebifera. These findings provide comprehensive information on the leaf transcriptome and three pigments of T. sebifera, thereby shedding new light on the mechanisms underlying the autumnal colouring of the leaves of this tree.


Assuntos
Antocianinas , Euphorbiaceae , Transcriptoma , Antocianinas/metabolismo , Clorofila , Perfilação da Expressão Gênica , Metaboloma , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Cor
8.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338311

RESUMO

The prevalence of facial nerve injury is substantial, and the restoration of its structure and function remains a significant challenge. Autologous nerve transplantation is a common treatment for severed facial nerve injury; however, it has great limitations. Therefore, there is an urgent need for clinical repair methods that can rival it. Tissue engineering nerve conduits are usually composed of scaffolds, cells and neurofactors. Tissue engineering is regarded as a promising method for facial nerve regeneration. Among different factors, the porous nerve conduit made of organic materials, which has high porosity and biocompatibility, plays an indispensable role. This review introduces facial nerve injury and the existing treatment methods and discusses the necessity of the application of porous nerve conduit. We focus on the application of porous organic polymer materials from production technology and material classification and summarize the necessity and research progress of these in repairing severed facial nerve injury, which is relatively rare in the existing articles. This review provides a theoretical basis for further research into and clinical interventions on facial nerve injury and has certain guiding significance for the development of new materials.


Assuntos
Traumatismos do Nervo Facial , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Traumatismos do Nervo Facial/terapia , Porosidade , Próteses e Implantes , Polímeros , Regeneração Nervosa , Alicerces Teciduais
9.
Sci Rep ; 14(1): 2367, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287125

RESUMO

Multiple primary cancer (MPC) denotes individuals with two or more malignant tumors occurring simultaneously or successively. Herein, a total of 11,000 pancancer patients in TCGA database (1993-2013) were divided into MPC or non-MPC groups based on their history of other malignant tumors. The incidence of MPC has risen to 8.5-13.1% since 2000. Elderly individuals, males, early-stage cancer patients, and African Americans and Caucasians are identified as independent risk factors (p < 0.0001). Non-MPC patients exhibit significantly longer overall survival (OS) and disease-free survival (DFS) (p = 0.0038 and p = 0.0014). Age (p < 0.001) and tumor staging at initial diagnosis (p < 0.001) contribute to this difference. In our center, MPC was identified in 380 out of 801 tumor events based on SEER criteria. The peak occurrence of secondary primary was about 1-5 years after the first primary tumor, with a second small peak around 10-15 years. Multiple tumors commonly occur in the same organ (e.g., breast and lung), constituting 12.6%. Certain cancer types, notably skin cutaneous melanoma (SKCM), exhibit significantly higher tumor mutational burden (TMB) in the MPC group (17.31 vs. 6.55 mutations/MB, p < 0.001), with high TMB associated with improved survival (p < 0.001). High TMB in MPC may serve as a predictor for potential immunotherapy application.


Assuntos
Melanoma , Neoplasias Primárias Múltiplas , Neoplasias Cutâneas , Masculino , Humanos , Idoso , Melanoma/patologia , Neoplasias Cutâneas/patologia , Estadiamento de Neoplasias , Genômica , Neoplasias Primárias Múltiplas/epidemiologia , Mutação , Biomarcadores Tumorais
10.
Nucleic Acids Res ; 52(3): 1471-1482, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38197271

RESUMO

Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.


Assuntos
Proteínas de Escherichia coli , Nitratos , Ativação Transcricional , Proteínas de Bactérias/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitratos/metabolismo
11.
Int Immunopharmacol ; 125(Pt B): 111138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948858

RESUMO

BACKGROUND: Baseline corticosteroids exposure is associated with inferior clinical outcomes in patients with non-small-cell lung cancer (NSCLC) treated with programmed cell death-1 (PD-1) axis blockade. Dexamethasone is a potent corticosteroid used in the prevention of chemotherapy-associated adverse events (CAAEs). OBJECTIVE: Since dexamethasone has immunosuppressive properties, this study attempted to elucidate its effects on the efficacy of immunotherapy plus chemotherapy in patients with non-squamous NSCLC. METHODS: The study retrospectively analyzed the medical records of 254 advanced non-squamous NSCLC patients who received front-line treatment with a PD-1 pathway inhibitor and platinum-based chemotherapy at three academic institutions. The average dosage of prophylactic dexamethasone per chemotherapy cycle was calculated. Patients were divided into three groups based on the dose of dexamethasone: High-d (≥24 mg), Moderate-d (12-24 mg), and Low-d (<12 mg). Spearman's rank correlation was used to assess the correlation between the dosage of dexamethasone and progression-free survival (PFS). Logistic regression was used to assess the correlation between dexamethasone dosage and the occurrence of immune related adverse effects (irAE). Univariate and multivariate Cox proportional hazards regression models were used to analyze the differences in survival among the different dexamethasone dosage groups. RESULT: The dosage of prophylactic dexamethasone was not significantly correlated with PFS (Spearman's rho = -0.103, P = 0.098). Results from the univariate [hazard ratio (HR)Low-d/High-d, 1.00; P = 0.997; HRModerate-d/High-d, 0.85; P = 0.438] and multivariate (HRLow-d/High-d, 0.71; P = 0.174; HRModerate-d/High-d, 0.87; P = 0.512) analyses showed no significant association between dexamethasone and PFS. Dexamethasone did not have significant effect on the objective response rate, disease control rate or overall survival. The toxicity profiles of irAE were similar across all three groups. CONCLUSION: The results of this study suggest that the use of prophylactic dexamethasone does not have an adverse effect on the clinical outcomes of non-squamous NSCLC patients treated with PD-1 blockade therapy and chemotherapy. Routine use of dexamethasone for preventing CAAEs should be recommended for patients undergoing combined immunotherapy and chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Dexametasona/uso terapêutico
12.
Emerg Microbes Infect ; 12(2): 2276339, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029724

RESUMO

Although para-aminosalicylic acid (PAS) has been used to treat tuberculosis agent for decades, its mechanisms of resistance are still not thoroughly understood. Previously, sporadic studies showed that certain mutations in the thyX-hsdS.1 region caused PAS resistance in M. tuberculosis, but a comprehensive analysis is lacking. Recently, we found a G-10A mutation in thyX-hsdS.1 in a PAS-resistant clinical isolate, but it did not cause PAS resistance. SNPs in thyX-hsdS.1 in 6550 clinical isolates were analyzed, and 153 SNPs were identified. C-16 T was the most common SNP identified (54.25%, 83/153), followed by C-4T (7.19%, 11/153) and G-9A (6.54%, 10/153). Subsequently, the effects of those SNPs on the promoter activity of thyX were tested, and the results showed that mutations C-1T, G-3A, C-4T, C-4G, G-7A, G-9A, C-16T, G-18C, and C-19G led to increased promoter activity compared with the wild-type sequence, but other mutations did not. Then, thyX and wild-type thyX-hsdS.1, or thyX-hsdS.1 containing specific SNPs, were overexpressed in M. tuberculosis H37Ra. The results showed that mutations resulting in increased promoter activity also caused PAS resistance. Moreover, the results of an electrophoretic mobility shift assay showed that thyX-hsdS.1 containing the C-16T mutation had a higher binding capacity to RNA polymerase than did the wild-type sequence. Taken together, our data demonstrated that among the SNPs identified in thyX-hsdS.1 of M. tuberculosis clinical isolates, only those able to increase the promoter activity of thyX caused PAS resistance and therefore can be considered as molecular markers for PAS resistance.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuberculose , Humanos , Ácido Aminossalicílico/farmacologia , Tuberculose/tratamento farmacológico , Mutação , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
13.
Ther Adv Med Oncol ; 15: 17588359231200463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881238

RESUMO

Background: For Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), measuring up to two target lesions per organ is an arbitrary criterion. Objectives: We sought to compare response assessment using RECIST1.1 and modified RECIST1.1 (mRECIST1.1, measuring the single largest lesion per organ) in advanced non-small cell lung cancer (aNSCLC) patients undergoing anti-PD-1/PD-L1 monotherapy. Methods: Concordance of radiologic response categorization between RECIST1.1 and mRECIST1.1 was compared using the Kappa statistics. C-index was calculated to evaluate prognostic accuracy of radiologic response by the two criteria. The Kaplan-Meier method and Cox regression analysis were conducted for progression-free survival (PFS) and overall survival (OS). Results: Eighty-seven patients who had at least two target lesions in any organ per the RECIST1.1 were eligible for comparison analysis. Tumor response showed excellent concordance when measured using the RECIST1.1 and mRECIST1.1 (Kappa = 0.961). C-index by these two criteria was similar for PFS (0.784 versus 0.785) and OS (0.649 versus 0.652). Responders had significantly longer PFS and OS versus non-responders (p < 0.05), whichever criterion adopted. Radiologic response remained a significant predictor of PFS and OS in multivariate analysis (p < 0.05). Conclusion: The mRECIST1.1 was comparable to RECIST1.1 in response assessment among aNSCLC patients who received single-agent PD-1/PD-L1 inhibitor. The mRECIST1.1, with reduced number of lesions to be measured, may be sufficient and more convenient to assess antitumor activity in clinical practice.

14.
NPJ Precis Oncol ; 7(1): 87, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696887

RESUMO

Programmed cell death ligand 1 (PD-L1) expression remains the most widely used biomarker for predicting response to immune checkpoint inhibitors (ICI), but its predictiveness varies considerably. Identification of factors accounting for the varying PD-L1 performance is urgently needed. Here, using data from three independent trials comprising 1239 patients, we have identified subsets of cancer with distinct PD-L1 predictiveness based on tumor transcriptome. In the Predictiveness-High (PH) group, PD-L1+ tumors show better overall survival, progression-free survival, and objective response rate with ICI than PD-L1- tumors across three trials. However, the Predictiveness-Low (PL) group demonstrates an opposite trend towards better outcomes for PD-L1- tumors. PD-L1+ tumors from the PH group demonstrate the superiority of ICI over chemotherapy, whereas PD-L1+ tumors from the PL group show comparable efficacy between two treatments or exhibit an opposite trend favoring chemotherapy. This observation of context-dependent predictiveness remains strong regardless of immune subtype (Immune-Enriched or Non-Immune), PD-L1 regulation mechanism (adaptative or constitutive), tumor mutation burden, or neoantigen load. This work illuminates avenues for optimizing the use of PD-L1 expression in clinical decision-making and trial design, although this exploratory concept should be further confirmed in large trials.

15.
J Thorac Oncol ; 18(12): 1714-1730, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37495171

RESUMO

INTRODUCTION: Conflicting findings have been reported regarding the association between STK11/LKB1 mutations and immune checkpoint inhibitor (ICB) efficacy in NSCLC. It has been reported that tumors could exhibit impaired STK11/LKB1 function even without STK11 mutations. We hypothesized that STK11 phenotype rather than mutation may better stratify ICB outcomes. METHODS: Selected functional STK11 events and LKB1 protein data were leveraged to establish a transcriptomics-based classifier of STK11 phenotype (STK11-deficient [-def] or -proficient [-prof]). We analyzed in-house and Genentech/Roche's data of three randomized trials of programmed cell death protein-1 or programmed death-ligand 1 (PD-L1) inhibition in NSCLC (ORIENT-11, n = 171; OAK, n = 699; POPLAR, n = 192) and The Cancer Genome Atlas-NSCLC cohort. RESULTS: Tissue STK11 mutation did not affect ICB outcomes. However, the survival benefit of ICB versus chemotherapy were lost or reversed in STK11-def tumors (hazard ratios for death, 95% confidence interval: OAK [0.97, 0.69-1.35]; POPLAR [1.61, 0.88-2.97]; ORIENT-11 [1.07, 0.50-2.29]), while remaining in STK11-prof tumors (hazard ratios for death, 95% confidence interval: OAK [0.81, 0.66-0.99]; POPLAR [0.66, 0.46-0.95]; ORIENT-11 [0.59, 0.37-0.92]). In tumors differentially classified by phenotype and mutation status, STK11-wild-type/def tumors had significantly worse ICB outcomes than STK11-mutated (STK11-MUT)/prof tumors (p < 0.05). The deleterious impact of STK11 deficiency was independent of STK11/KRAS/KEAP1 status or PD-L1 expression. The STING/interferon-I signaling, which was previously shown to be suppressed in STK11-MUT models, was perturbed in patients with STK11-def tumors rather than those with STK11-MUT tumors. Surprisingly, whereas high CD8+ T-cell infiltration was significantly associated with prolonged survival with ICB in STK11-prof tumors (p < 0.05 for 3 trials), it predicted an opposite trend toward worse ICB outcomes in STK11-def tumors across three trials. This suggested an association between STK11 deficiency and CD8+ T-cell dysfunction, which might not be reversed by programmed cell death protein 1 or PD-L1 blockade. CONCLUSIONS: STK11 phenotype rather than mutation status can accurately identify patients with ICB-refractory NSCLC and reflect immune suppression. It can help refine stratification algorithms for future clinical research and also provide a reliable resource aiding basic and translational studies in identifying therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Antígeno B7-H1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Imunoterapia , Linfócitos T CD8-Positivos , Fenótipo , Mutação , Quinases Proteína-Quinases Ativadas por AMP
16.
iScience ; 26(7): 107058, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37416452

RESUMO

The immune and stromal contexture within the tumor microenvironment (TME) interact with cancer cells and jointly determine disease process and therapeutic response. We aimed at developing a risk scoring model based on TME-related genes of squamous cell lung cancer to predict patient prognosis and immunotherapeutic response. TME-related genes were identified through exploring genes that correlated with immune scores and stromal scores. LASSO-Cox regression model was used to establish the TME-related risk scoring (TMErisk) model. A TMErisk model containing six genes was established. High TMErisk correlated with unfavorable OS in LUSC patients and this association was validated in multiple NSCLC datasets. Genes involved in pathways associated with immunosuppressive microenvironment were enriched in the high TMErisk group. Tumors with high TMErisk showed elevated infiltration of immunosuppressive cells. High TMErisk predicted worse immunotherapeutic response and prognosis across multiple carcinomas. TMErisk model could serve as a robust biomarker for predicting OS and immunotherapeutic response.

17.
Biochem Biophys Res Commun ; 667: 1-9, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37201357

RESUMO

Cardiac ischemia/reperfusion(I/R) induced-cardiac vascular endothelial injury is an important pathological process that appears in the early stage of cardiac I/R injury. The autophagy-lysosomal pathway is essential for the maintenance of cellular homeostasis. However, in cardiac I/R injury, the role of the autophagy-lysosomal pathway is controversial. The present study aimed to use oxygen-glucose deprivation/oxygen-glucose resupply(OGD/OGR) in human coronary artery endothelial cells(HCAECs) with I/R injury to assess the role of the autophagy-lysosomal pathway in I/R-induced endothelial injury. The results revealed lysosomal dysfunction and impaired autophagic flux in endothelial cells exposed to OGD/OGR. Meanwhile, our data showed that the levels of cathepsin D(CTSD) decreased time-dependently. Knockdown of CTSD caused lysosomal dysfunction and impaired autophagic flux. Conversely, restoration of CTSD levels protected HCAECs against OGD/OGR induced-defects in autophagy-lysosomal function and cellular damage. Our findings indicated that I/R induced-impaired autophagic flux, rather than excessive autophagic initiation, mediates endothelial cells injury. The maintenance of autophagy-lysosomal function is critical to protect endothelial cells against I/R injury, and CTSD is a key regulator. Thus, strategies focused on restoring CTSD function are potentially novel treatments for cardiac reperfusion injury.


Assuntos
Autofagia , Catepsina D , Lisossomos , Traumatismo por Reperfusão , Humanos , Artérias/citologia , Lisossomos/metabolismo , Traumatismo por Reperfusão/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Técnicas de Silenciamento de Genes , Células Cultivadas , Oxigênio/metabolismo , Glucose/metabolismo
18.
Bioeng Transl Med ; 8(2): e10449, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925686

RESUMO

Hyperuricemia is a prevalent disease worldwide that is characterized by elevated urate levels in the blood owing to purine metabolic disorders, which can result in gout and comorbidities. To facilitate the treatment of hyperuricemia through the uricolysis, we engineered a probiotic Escherichia coli Nissle 1917 (EcN) named EcN C6 by inserting an FtsP-uricase cassette into an "insulated site" located between the uspG and ahpF genes. Expression of FtsP-uricase in this insulated region did not influence the probiotic properties or global gene transcription of EcN but strongly increased the enzymatic activity for urate degeneration, suggesting that the genome-based insulated system is an ideal strategy for EcN modification. Oral administration of EcN C6 successfully alleviated hyperuricemia, related symptoms and gut microbiota in a purine-rich food-induced hyperuricemia rat model and a uox-knockout mouse model. Together, our study provides an insulated site for heterologous gene expression in EcN strain and a recombinant EcN C6 strain as a safe and effective therapeutic candidate for hyperuricemia treatment.

19.
Proc Natl Acad Sci U S A ; 120(9): e2219952120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802416

RESUMO

Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.


Assuntos
Córtex Pré-Frontal , Receptor EphB2 , Comportamento Social , Animais , Camundongos , Encéfalo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptor EphB2/genética , Receptor EphB2/fisiologia
20.
Front Immunol ; 14: 959868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798137

RESUMO

Background: The leucine rich repeat containing 3B (LRRC3B) gene is a tumor suppressor gene involved in the anti-tumor immune microenvironment. Expression of LRRC3B and DNA methylation at the LRRC3B promoter region may serve as a useful marker to predict response to anti-PD-1 therapy. However, no studies have yet systematically explored the protective role of LRRC3B methylation in tumor progression and immunity. Methods: Expression of LRRC3B of 33 cancer types in The Cancer Genome Atlas (TCGA) was downloaded from UCSC Xena (http://xena.ucsc.edu/). And, we evaluated the differential expression of LRRC3B according to tumor stage, overall survival, and characteristics of the tumor microenvironment. The immunotherapeutic cohorts included IMvigor21, GSE119144, and GSE72308 which were obtained from the Gene Expression Omnibus database. We conducted pearson correlation analysis of LRRC3B and tumor microenvironment (TME) in pan-cancer. Also, six immune cell types (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and tumor purity were analyzed using the Tumor IMmune Estimation Resource (TIMER1.0) (Tumor IMmune Estimation Resource (TIMER2.0). And, a "silencing score" model base on LRRC3B promoter methylation to predict overall survival (OS) by multivariate Cox regression analysis was constructed. Finally, the model was applied to predict anti-PD-1 therapy in non-small cell lung cancer (NSCLC) and breast cancer (BRCA). Results: LRRC3B expression associated with less tumor invasion, less severe tumor stage, and decreased metastasis. The inactivation of LRRC3B promoted the enrichment of immuneosuppressive cells, including myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), M2 subtype of tumor-associated macrophages (M2-TAMs), M1 subtype of tumor-associated macrophages (M1-TAMs), and regulatory T (Treg) cells. A high silencing score was significantly associated with immune inhibition, low expression of LRRC3B, poor patient survival, and activation of cancer-related pathways. Conclusion: Our comprehensive analysis demonstrated the potential role of LRRC3B in the anti-tumor microenvironment, clinicopathological features of cancer, and disease prognosis. It suggested that LRRC3B methylation could be used as a powerful biomarker to predict immunotherapy responses in NSCLC and BRCA.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Neoplasias , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Metilação de DNA , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA