Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Pest Manag Sci ; 79(7): 2493-2502, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36864770

RESUMO

BACKGROUND: Kiwifruit rot is an important disease caused by different fungal pathogens, which can lead to huge economic loss in the kiwifruit industry. The aims of this study were to discover an effective botanical compound that significantly inhibits the pathogens causing kiwifruit rot, evaluate its control efficacy against this disease, and reveal the underlying mechanisms. RESULTS: A strain of Fusarium tricinctum (GF-1), isolated from diseased kiwifruit, could cause fruit rot in both Actinidia chinensis var. chinensis and Actinidia chinensis var. deliciosa. Different botanical chemicals were used for antifungal activity test against GF-1 and thymol was the most effective one with a 50% effective concentration (EC50 ) of 30.98 mg L-1 . The minimal inhibitory concentration (MIC) of thymol against GF-1 was 90 mg L-1 . Control efficacy of thymol against kiwifruit rot was evaluated and the results indicated that thymol could effectively decrease the occurrence and spread of kiwifruit rot. The mechanisms underlying the antifungal activity of thymol against F. tricinctum were investigated, and it showed that thymol could significantly damage the ultrastructure, destroy the plasma membrane integrity, and instantaneously increase energy metabolisms of F. tricinctum. Further investigations indicated that thymol could extend shelf life of kiwifruit by increasing their storability. CONCLUSION: Thymol can effectively inhibit F. tricinctum that is one of the causal agents of kiwifruit rot. Multiple modes of action are involved in the antifungal activity. The results of this study indicate that thymol can be a promising botanical fungicide to control kiwifruit rot and provide useful references for thymol application in agriculture system. © 2023 Society of Chemical Industry.


Assuntos
Actinidia , Timol , Timol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Frutas/microbiologia , Actinidia/química
3.
Pathogens ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745527

RESUMO

Kiwifruit (Actinidia chinensis) is an important commercial crop in China, and the occurrence of diseases may cause significant economic loss in its production. In the present study, a new pathogen that causes brown leaf spot disease on kiwifruit was reported. The fungus was isolated from an infected sample and identified as Fusarium graminearum based on morphological and molecular evaluation. Koch's postulates were confirmed when the pathogen was re-isolated from plants with artificially induced symptoms and identified as F. graminearum. Based on the biological characteristics of the pathogen, it was determined that: its optimal growth temperature was 25 °C; optimal pH was 7; most suitable carbon source was soluble starch; most suitable nitrogen source was yeast powder; and best photoperiod was 12 h light/12 h dark. Further investigations were conducted by determining 50% effective concentrations (EC50) of several active ingredients of biological fungicides against F. graminearum. The results showed that among the studied fungicides, tetramycin and honokiol had the highest antifungal activity against this pathogen. Our findings provide a scientific basis for the prevention and treatment of brown leaf spot disease on kiwifruit.

4.
J Fungi (Basel) ; 8(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35330241

RESUMO

Kiwifruit is a nutritious and economically important fruit that is widely cultivated in China. In 2021, leaf spot disease of kiwifruit was discovered in the main kiwifruit-producing area of Xifeng County, Guizhou Province, China. Leaf spot disease weakens plant photosynthesis and reduces nutrient synthesis, thereby affecting plant growth. We studied the morphological characteristics and performed a combined analysis of EF-1α, RPB2, and TUB2 genes of Fusarium fujikuroi, a fungus associated with leaf spot disease. The pathogenicity of F. fujikuroi followed Koch's hypothesis, confirming that this fungus is the cause of kiwifruit leaf spot disease. The sensitivity of seven natural antifungal agents against F. fujikuroi was measured using the mycelial growth rate method. Honokiol, cinnamaldehyde, and osthol showed good antifungal effects against F. fujikuroi, with EC50 values of 18.50, 64.60, and 64.86 µg/mL, respectively. The regression coefficient of cinnamaldehyde was the largest at 2.23, while that of honokiol was the smallest at 0.408. Fusarium fujikuroi was the most sensitive to cinnamaldehyde.

5.
J Fungi (Basel) ; 7(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34829224

RESUMO

Alternaria alternata is the main pathogenic species of various crops, including kiwifruit (Actinidia cinensis). In this study, an antagonistic fungus, J-1, with high antifungal activity against A. alternata was isolated from A. cinensis "Hongyang." The strain J-1 was identified as Fusicolla violacea via morphological identification and DNA sequencing. This study aimed to evaluate the antifungal activity and potential mechanism of the strain J-1 against A. alternata. The strain J-1 exhibited antifungal activity against A. alternata, with an inhibition rate of 66.1% in vitro. Aseptic filtrate (AF) produced by the strain J-1 could suppress the mycelial growth and conidia germination of A. alternata at the inhibition rates of 66.8% and 80%, respectively, as well as suppress the spread of Alternaria rot in fresh kiwifruit. We observed that many clusters of spherical protrusions appeared at the mycelial tips of A. alternata after treatment with 200 mL L-1 AF of J-1. Scanning electron microscopy analysis results showed that the mycelial structures were bent and/or malformed and the surfaces were rough and protuberant. Variations in temperature, pH, and storage time had little effect on the antifungal activity of the AF. Moreover, the AF could damage the integrity of cell membranes and cause intracellular content leakage. Meanwhile, the chitinase and ß-1,3-glucanase enzyme activities increased significantly, indicating that the function of A. alternata cell wall was seriously injured. Eleven antimicrobial metabolites were identified by gas chromatography-mass spectrometry (GC-MS). The strain J-I and its AF exhibited well broad-spectrum antifungal activity against Diaporthe eres, Epicoccum sorghinum, Fusarium graminearum, Phomopsis sp., and Botryosphaeria dothidea, with inhibition rates ranging from 34.4% to 75.1% and 42.7% to 75.2%, respectively. Fusicolla violacea J-1 is a potential biocontrol agent against A. alternata and other fungal phytopathogens.

6.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008632

RESUMO

Kiwifruit is moderately sweet and sour and quite popular among consumers; it has been widely planted in some areas of the world. In 2019, the crown gall disease of kiwifruit was discovered in the main kiwifruit-producing area of Guizhou Province, China. This disease can weaken and eventually cause the death of the tree. The phylogeny, morphological and biological characteristics of the bacteria were described, and were related to diseases. The pathogenicity of this species follows the Koch hypothesis, confirming that A. fabacearum is the pathogen of crown gall disease of kiwifruit in China. In this study, Loop-mediated isothermal amplification (LAMP) analysis for genome-specific gene sequences was developed for the specific detection of A. fabacearum. The detection limit of the LAMP method is 5 × 10-7 ng/µL, which has high sensitivity. At the same time, the amplified product is stained with SYBR Green I after the reaction is completed, so that the amplification can be detected with the naked eye. LAMP analysis detected the presence of A. fabacearum in the roots and soil samples of the infected kiwifruit plant. The proposed LAMP detection technology in this study offers the advantages of ease of operation, visibility of results, rapidity, accuracy and high sensitivity, making it suitable for the early diagnosis of crown gall disease of kiwifruit.


Assuntos
Actinidia/microbiologia , Agrobacterium/fisiologia , Frutas/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Tumores de Planta/microbiologia , Agrobacterium/patogenicidade , Sequência de Bases , China , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
7.
Sheng Li Xue Bao ; 72(5): 551-558, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33106825

RESUMO

The purpose of the present study was to determine the effects of resveratrol on hypoxia-induced oxidative stress and proliferation in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism. Primary rat PASMCs were isolated and cultured in vitro and pretreated with different concentrations of resveratrol (10, 20, and 40 µmol/L) or the NADPH oxidase (NOX) inhibitor VAS2870 (10 µmol/L) for 0.5 h. The cells were then cultured under normoxia (21% O2, 5% CO2) or hypoxia (2% O2, 5% CO2) for 24 h. The proliferation of cells was measured using the CCK-8 method and the expression of proliferating cell nuclear antigen (PCNA). The production of reactive oxygen species (ROS) was detected by DCFH-DA. The expression of rat NOX1, NOX4 and hypoxia inducible factor 1α (HIF-1α) was detected by real-time RT-PCR and Western blotting assays. The related signaling pathways were determined using the small interference RNAs (siRNAs) specifically targeting Hif-1α and Nox4. The results showed that resveratrol and VAS2870 significantly inhibited hypoxia-induced cell proliferation and ROS production in rat PASMCs. Resveratrol also effectively prevented hypoxia-induced increase of HIF-1α protein levels and NOX4 up-regulation, but had little effect on NOX1. After the knocking down of Hif-1α or Nox4 with siRNAs, hypoxia-induced cell proliferation and ROS accumulation were significantly decreased, and both were further inhibited by resveratrol treatment. These results suggest that resveratrol inhibits hypoxia-induced oxidative stress and cell proliferation in rat PASMCs possibly through blocking the HIF-1α/NOX4/ROS pathway.


Assuntos
Artéria Pulmonar , Resveratrol , Animais , Proliferação de Células , Células Cultivadas , Hipóxia , Miócitos de Músculo Liso , NADPH Oxidase 4 , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Resveratrol/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA