Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34301, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149041

RESUMO

Lactate levels in humans reveal intensity and duration of exertion and provide a critical readout for the severity of life-threatening illnesses such as pediatric sepsis. Using the lactate oxidase enzyme (Lox) from Aerococcus viridians, we demonstrated its functionality for lactate electrochemical sensing in physiological fluids in a lab setting. The structure and dynamics of LOx were validated by crystallography, X-ray scattering, and hydroxyl radical protein footprinting. This provided a validated protein template for understanding and designing an enzyme-based electrochemical sensing elements. Using this template, LOx enzyme variants were generated and compared. Comparison of the variants demonstrates that one exhibits effective lactate sensing at significantly reduced operating voltages. Additionally, we demonstrate that the four hexahistidine-tags on each enzyme tetramer are sufficient for immobilization to create a durable, functional sensor, with no need for a covalent attachment, enabling self-immobilization and eliminating the need for additional immobilization steps. The functionality of the LOx enzyme variants was verified at physiological lactate concentrations in both human serum (0-4 mM) and artificial sweat (0-100 mM) using 3-electrode setups for analysis of the three variants in parallel. Accuracy of measurement in both artificial sweat and human serum were high. Employing a microfluidic flow cell, we successfully monitored varying lactate levels in physiological fluids continuously over a 2h period. Overall, this optimized LOx enzyme, which self-immobilizes onto gold sensing electrodes, facilitates efficient and reliable lactate detection and continuous monitoring at reduced operating voltages suitable for further development towards commercial use.

2.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241390

RESUMO

Carbon monoxide (CO) is a colourless, odourless, and toxic gas. Long-term exposure to high concentrations of CO causes poisoning and even death; therefore, CO removal is particularly important. Current research has focused on the efficient and rapid removal of CO via low-temperature (ambient) catalytic oxidation. Gold nanoparticles are widely used catalysts for the high-efficiency removal of high concentrations of CO at ambient temperature. However, easy poisoning and inactivation due to the presence of SO2 and H2S affect its activity and practical application. In this study, a bimetallic catalyst, Pd-Au/FeOx/Al2O3, with a Au:Pd ratio of 2:1 (wt%) was formed by adding Pd nanoparticles to a highly active Au/FeOx/Al2O3 catalyst. Its analysis and characterisation proved that it has improved catalytic activity for CO oxidation and excellent stability. A total conversion of 2500 ppm of CO at -30 °C was achieved. Furthermore, at ambient temperature and a volume space velocity of 13,000 h-1, 20,000 ppm CO was fully converted and maintained for 132 min. Density functional theory (DFT) calculations and in situ FTIR analysis revealed that Pd-Au/FeOx/Al2O3 exhibited stronger resistance to SO2 and H2S adsorption than the Au/FeOx/Al2O3 catalyst. This study provides a reference for the practical application of a CO catalyst with high performance and high environmental stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA