Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 59(6): e14631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828566

RESUMO

This study examines the impact of Notoginsenoside R1 (NGR1), a compound from Panax notoginseng, on the maturation of porcine oocytes and their embryonic development, focusing on its effects on antioxidant levels and mitochondrial function. This study demonstrates that supplementing in vitro maturation (IVM) medium with NGR1 significantly enhances several biochemical parameters. These include elevated levels of glutathione (GSH), nuclear factor erythrocyte 2-related factor 2 (NRF2) and mRNA expression of catalase (CAT) and GPX. Concurrently, we observed a decrease in reactive oxygen species (ROS) levels and an increase in JC-1 immunofluorescence, mitochondrial distribution, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and nuclear NRF2 mRNA levels. Additionally, there was an increase in ATP production and lipid droplets (LDs) immunofluorescence. These biochemical improvements correlate with enhanced embryonic outcomes, including a higher blastocyst rate, increased total cell count, enhanced proliferative capacity and elevated octamer-binding transcription factor 4 (Oct4) and superoxide dismutase 2 (Sod2) gene expression. Furthermore, NGR1 supplementation resulted in decreased apoptosis, reduced caspase 3 (Cas3) and BCL2-Associated X (Bax) mRNA levels and decreased glucose-regulated protein 78 kD (GRP78) immunofluorescence in porcine oocytes undergoing in vitro maturation. These findings suggest that NGR1 plays a crucial role in promoting porcine oocyte maturation and subsequent embryonic development by providing antioxidant levels and mitochondrial protection.


Assuntos
Antioxidantes , Desenvolvimento Embrionário , Ginsenosídeos , Técnicas de Maturação in Vitro de Oócitos , Mitocôndrias , Oócitos , Animais , Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Mitocôndrias/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Feminino , Suínos , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Cultura Embrionária/veterinária
2.
Reprod Domest Anim ; 58(11): 1583-1594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696770

RESUMO

Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 µM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.


Assuntos
Desenvolvimento Embrionário , Partenogênese , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Blastocisto , Glutationa/metabolismo , Apoptose
3.
Animals (Basel) ; 13(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37508068

RESUMO

Widely used as a flame retardant, 2,2'4,4'-tetrabromodiphenyl ether (BDE-47) is a persistent environmental pollutant with toxicological effects, including hepatotoxicity, neurotoxicity, reproductive toxicity, and endocrine disruption. To investigate the toxicological effects of BDE-47 on early porcine embryogenesis in vitro, cultured porcine embryos were exposed to BDE-47 during early development. Exposure to 100 µM BDE-47 decreased the blastocyst rate and mRNA level of pluripotency genes but increased the level of LC3 and the expression of autophagy-related genes. After BDE-47 exposure, porcine embryos' antioxidant capability decreased; ROS levels increased, while glutathione (GSH) levels and the expression of antioxidant-related genes decreased. In addition, BDE-47 exposure reduced mitochondrial abundance and mitochondrial membrane potential levels, downregulated mitochondrial biogenesis-associated genes, decreased endoplasmic reticulum (ER) abundance, increased the levels of GRP78, a marker of ER stress (ERS), and upregulated the expression of ERS-related genes. However, ER damage and low embryo quality induced by BDE-47 exposure were reversed with the ERS inhibitor, the 4-phenylbutyric acid. In conclusion, BDE-47 inhibits the development of early porcine embryos in vitro by inducing mitochondrial dysfunction and ERS. This study sheds light on the mechanisms of BDE-47-induced embryonic toxicity.

4.
Reprod Biomed Online ; 47(2): 103211, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246104

RESUMO

RESEARCH QUESTION: Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN: Early porcine embryos were incubated in the presence of 0.5 µmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS: The addition of 0.5 µmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION: XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Gravidez , Animais , Feminino , Suínos , Espécies Reativas de Oxigênio/metabolismo , Desenvolvimento Embrionário , Apoptose , Mitocôndrias/metabolismo , Estresse Oxidativo
5.
Vet Sci ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851447

RESUMO

Chrysoeriol (CHE) is a flavonoid substance that exists in many plants. It has various physiological and pharmacological effects, including anti-inflammatory, antioxidant, anti-tumor, and protective activity, especially for the cardiovascular system and liver. Among common livestock embryos, porcine embryos are often considered high-quality objects for studying the antioxidant mechanisms of oocytes. Because porcine embryos contain high levels of lipids, they are more vulnerable to external stimuli, which affect development. Our study explored the influence of CHE supplementation on oxidative stress in porcine oocytes and its possible mechanisms. Different concentrations of CHE (0, 0.1, 1, and 3 µM) were supplemented in the in vitro culture medium of the porcine oocytes. The results showed that supplementation with 1 µM CHE significantly increased the blastocyst rate and total cell number of embryos in vitro. After finding the beneficial effects of CHE, we measured reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane potential (MMP) when the oocytes reached the 4-cell stage of development and determined the levels of apoptosis, cell proliferation, and autophagy at the blastocyst stage of development. The expression levels of some related genes were preliminarily detected by qRT-PCR. The results showed that the apoptosis of blastocysts in the CHE-treated culture also decreased compared with the untreated culture. Furthermore, CHE downregulated intracellular ROS and increased GSH in the embryos. CHE was also shown to improve the activity of mitochondria and inhibit the occurrence of autophagy. In addition, antioxidant-related genes (SOD1, SOD2, and CAT) and cell pluripotency-related genes (SOX2, OCT4, and NANOG) were upregulated. At the same time, apoptosis-related (Caspase 3) and autophagy-related (LC3B) genes showed a downward trend after supplementation with CHE. These results indicate that CHE improved the development of porcine embryos in vitro by reducing oxidative stress and autophagy levels.

6.
Nanoscale ; 6(15): 9034-42, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24970315

RESUMO

Single-component nanostructures with axial asymmetry were successfully synthesized in organic solvents via a new type of growth model. Asymmetric axial ZnO nanospindles with a hexagonal cross-section were produced by a growth model consisting of simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition. The growth process of ZnO nanospindles is explained by comprehensively characterizing and monitoring the products at different reaction time intervals. Hexagonal discs containing dislocations were first generated at a reaction time of 2.5 min. When the reaction time continued to increase, the nanodiscs grew along the 〈0002〉 direction. Half-nanospindles were formed at mid-reaction stage when the growth rate of [0001] was greater than [000-1]. Finally, the asymmetric nanospindles were obtained at 40 min. Further, the length of the asymmetric axial ZnO spindles can be precisely tuned by the adjustment of reaction temperature. Thus, the growth model presented here can synthesize a new category of one-dimensional asymmetric nanostructures.

7.
Langmuir ; 30(2): 602-10, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24367924

RESUMO

A comprehensive mechanistic study conducted on the formation mechanism of five-fold twinned copper nanowires by heating copper(I) chloride with oleylamine at 170 °C is presented. Electron microscopy and UV-visible absorption spectra are used to analyze the growth mechanism of copper nanowires. High-resolution transmission electron microscopy and selected-area electron diffraction are used to investigate the detailed structure of copper nanowires and nanoparticles, and a five-twinned structure is shown to exist in the copper nanowires and nanoparticles. Additionally, experiments have been performed to indirectly confirm that oleylamine preferentially adsorbs on the {100} facets of growing crystals. On the basis of the above results, the self-seeded growth of copper nanowires is confirmed. In the initial stage of reactions, copper nanoparticles with two distinctive sizes are formed. As the reaction proceeds, larger five-twinned copper nanoparticles serve as seeds for anisotropic crystal growth. Further, copper atoms generated from an Ostwald ripening process or reduction reactions of a copper(I) chloride-oleylamine complex continue to deposit and crystallize on the twin boundaries. Once the {110} planes are generated, oleylamine preferentially adsorbs on the newly formed {100} facets and then guides the formation of nanowires. The electrical resistivity of a single copper nanowire is measured to be 41.25 nΩ-m, which is of the same order of magnitude as the value of bulk copper (16.78 nΩ-m). Finally, an effective surface-enhanced Raman spectroscopy active substrate made of copper nanowire is used to detect the 4-mercaptobenzoic acid molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA