Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 224: 366-381, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233218

RESUMO

PURPOSE: Exploring the therapeutic effect and mechanism of isorhamnetin in the treatment of DMED. METHODS: Using a high glucose environment to induce endothelial cells damage in the corpus cavernosum, and combining with intervention agents such as ferroptosis inhibitors to observe the process of cell damage and repair, evaluating cell status through CCK-8 and DAPI; To establish the STZ-induced diabetes rat model and detect the erectile function and tissue changes; Perform transcriptomic sequencing on rat models and samples treated with isorhamnetin to analyze differentially expressed genes and their GO functions; Identify critical pathways by combining with the ferroptosis database; Flow cytometry was used to detect ROS and mitochondrial membrane potential, and RT-PCR was used to verify gene expression, Seahorse detects mitochondrial oxygen consumption rate, revealing the mechanism of action of isorhamnetin. RESULTS: Ferroptosis inhibitors and isorhamnetin can effectively reverse the damage of corpus cavernosum endothelial cells induced by high glucose and ferroptosis agonists. Isorhamnetin has the ability to reinstate the erectile function of diabetic rats, while enhancing the quantity of endothelial cells and refining the morphology of collagen fibers. Immunohistochemistry revealed that ferroptosis existed in the penis tissue of diabetes rats. Transcriptomic analysis showed that isorhamnetin improves gene expression in DM rats by regulating genes such as GFER, IGHM, GPX4 and HMOX1, involving multiple pathways and biological processes. Flow cytometry and RT-PCR confirmed that isorhamnetin can reduce reactive oxygen species levels, restore essential gene expression, improve mitochondrial membrane potential, and alleviate oxidative stress and ferroptosis. Seahorse detection found that isorhamnetin can restore mitochondrial oxygen consumption rate. CONCLUSION: Isorhamnetin attenuates high glucose damage to cavernous endothelial cells by inhibiting ferroptosis and oxidative stress, restores erectile function and improves tissue morphology in diabetic rats, and its multi-pathway and multi-targeting regulatory mechanism suggests that it is promising to be an effective drug for the treatment of DMED.

2.
Water Res ; 266: 122413, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39298904

RESUMO

Estuaries are one of the most important ecosystems in the world, which are economically developed and densely populated. However, the intricate hydrodynamic environment and frequent human activities within estuaries have left the spatiotemporal variability of water properties in these areas inadequately understood. Recently, based on in situ observations and numerical simulations, we found significant spring-neap variability of water mass properties in the Yangtze River Estuary, which exhibited a bi-layered vertical structure. In the Yangtze River Estuary, salinity could decrease (increase) over 4 psu during spring (neap) tides in the upper layer, and satellite observations confirmed that both sea surface chlorophyll-a concentration and particulate organic carbon concentration also showed significant spring-neap variabilities. Decreasing salinity in the upper layer induced a shoreward pressure gradient force in the lower layer, which caused shoreward advection of high salinity water from the deep ocean and resulted in salinity increasing up to 2 psu in the lower layer of the Yangtze River Estuary. Dynamical diagnoses proved that spring-neap variability of water mass properties were caused by the asymmetry of tidal currents via modulating the ratio of freshwater to seawater. Similar situations also occurred in the Mississippi River Estuary. Furthermore, constructions of dams and other hydraulic projects in the watershed could greatly alter the locations with significant spring-neap water masses variability through reducing the riverine sediment flux and thus, leading to the erosion of the tidal flats in estuaries. The above results highlight the important roles of tidal asymmetry and human activities in affecting spring-neap variabilities of water mass properties in estuaries.

3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 553-561, 2024 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39019784

RESUMO

OBJECTIVES: Age-related cataract is the most common type of adult cataract and a leading cause of blindness. Currently, there are few reports on the establishment of animal models for age-related cataract. During the experimental breeding of Microtus fortis (M. fortis), we first observed that M. fortis aged 12 to 15 months could naturally develop cataracts. This study aims to explore the possibility of developing them as an animal model for age-related cataract via identifing and analyzing spontaneous cataract in M. fortis. METHODS: The 12-month-old healthy M. fortis were served as a control group and 12-month-old cataractous M. fortis were served as an experimental group. The lens transparency was observed using the slit-lamp biomicroscope. Hematoxylin and eosin staining was used to detect pathological changes in the lens. Biochemical detection methods were applied to detect blood routine, blood glucose levels, the serum activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in both groups. Finally, real-time RT-PCR was used to detect the transcription levels of cataract-related genes in the lens of 2 groups. RESULTS: Compared with the control group, the lens of cataract M. fortis showed severely visible opacity, the structure of lens was destroyed seriously, and some pathological damage, such as swelling, degeneration/necrosis, calcification, hyperplasia, and fiber liquefaction were found in lens epithelial cells (LECs). The fibrous structure was disorganized and irregularly distributed with morgagnian globules (MGs) aggregated in the degenerated lens fibers. There was no statistically significant difference in blood glucose levels between the experimental and control groups (P>0.05). However, white blood cell (WBC) count (P<0.05), lymphocyte count (P<0.01), and lymphocyte ratio (P<0.05) were significantly decreased, while neutrophil percentage (P<0.05) and monocyte ratio (P<0.01) were significantly increased. The serum activities of SOD and GSH-Px (both P<0.05) were both reduced. The mRNAs of cataract-related genes, including CRYAA, CRYBA1, CRYBB3, Bsfp1, GJA3, CRYBA2, MIP, HspB1, DNase2B, and GJA8, were significantly downregultaed in the lenses of the experimental group (all P<0.05). CONCLUSIONS: There are significant differences in lens pathological changes, peroxidase levels, and cataract-related gene expression between cataract and healthy M. fortis. The developed cataract spontaneously in M. fortis is closely related to age, the cataract M. fortis might be an ideal animal model for the research of age-related cataract.


Assuntos
Arvicolinae , Catarata , Glutationa Peroxidase , Cristalino , Superóxido Dismutase , Animais , Catarata/genética , Catarata/patologia , Catarata/etiologia , Cristalino/patologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/sangue , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Envelhecimento , Modelos Animais de Doenças
4.
J Ethnopharmacol ; 319(Pt 3): 117365, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380568

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fufangxiaopi Formula (FF) is a modified form of Sishen Wan, traditionally used for treating diarrhea. The application of FF for treating ulcerative colitis (UC) has achieved desirable outcomes in clinical settings. However, the underlying mechanism of the effect of FF on UC is yet to be determined. AIM OF STUDY: This study aimed to evaluate the protective effect and underlying mechanism of FF on mice with dextran sodium sulfate (DSS)-induced colitis. MATERIALS AND METHODS: In vivo, the efficacy of FF on the symptoms associated with DSS-induced colitis in mice was clarified by observing the body weight change, colon length, DAI score, and H&E staining. The release of inflammatory mediators in mouse colon tissues was detected by ELISA and MPO, and the contents of TLR4/NF-κB signaling pathway and MAPK signaling pathway-related proteins, as well as intestinal barrier-related proteins, were detected in mouse colon tissues by western blot method. Changes in the content of barrier proteins in mouse colon tissues were detected by immunofluorescence. 16S rRNA sequencing and FMT were performed to clarify the effects of FF on intestinal flora. In vitro, the effect of FF-containing serum on LPS-induced inflammatory mediator release from RAW264.7 cells were detected by qRT-PCR. The contents of TLR4/NF The effects of FF-containing serum on B signaling pathway and MAPK signaling pathway related proteins in RAW264.7 cells and intestinal barrier related proteins in Caco-2 cells were detected by western blot. The effects of FF-containing serum on LPS-induced nuclear translocation of p65 protein in RAW264.7 cells and barrier-associated protein in Caco-2 cells were detected by immunofluorescence. RESULTS: In vivo studies showed that FF could significantly alleviate the symptoms of UC, including reducing colon length, weight loss, clinical score, and colon tissue injury in mice. FF could significantly reduce the secretion of proinflammatory cytokines by suppressing the activation of the TLR4/NF-κB and MAPK signaling pathways. Moreover, FF could protect the integrity of intestinal barriers by significantly increasing claudin-3, occludin, and ZO-1 expression levels. 16S rRNA sequencing and FMT elucidate that FF can alleviate symptoms associated with colitis in mice by interfering with intestinal flora. In vitro studies showed that FF drug-containing serum could significantly inhibit proinflammatory responses and attenuate the secretion of iNOS, IL-1ß, TNF-α, IL-6, and COX-2 by suppressing the activation of TLR4/NF-κB and MAPK signaling pathways in RAW264.7 cells. Furthermore, FF could protect the Caco-2 cell epithelial barrier. CONCLUSION: FF could alleviate DSS-induced colitis in mice by maintaining the intestinal barrier, inhibiting the activation of TLR4/NF-κB and MAPK signaling pathways, reducing the release of proinflammatory factors, and regulating intestinal microecology.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Colo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Phytother Res ; 38(4): 2023-2040, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38384110

RESUMO

Ulcerative colitis (UC) is one of the most prevalent inflammatory bowel diseases and poses a serious threat to human health. Currently, safe and effective preventive measures are unavailable. In this study, the protective effects of asiaticoside (AS) on dextran sodium sulfate (DSS)-induced colitis in mice and the underlying molecular mechanism were investigated. In this experiment, colitis was induced in mice with DSS. Subsequently, the role of AS in colitis and its underlying mechanisms were examined using H&E staining, immunofluorescence staining, western blot, Elisa, FMT, and other assays. The results showed that AS significantly attenuated the related symptoms of DSS-induced colitis in mice. In addition, AS inhibited the activation of signaling pathways TLR4/NF-κB and MAPK reduced the release of inflammatory factors, thereby attenuating the inflammatory response in mice. AS administration also restored the permeability of the intestinal barrier by increasing the levels of tight junction-associated proteins (claudin-3, occludin, and ZO-1). In addition, AS rebalanced the intestinal flora of DSS-treated mice by increasing the diversity of the flora. AS can alleviate DSS-induced ulcerative colitis in mice by maintaining the intestinal barrier, thus inhibiting the signaling pathways TLR4/NF-κB and MAPK activation, reducing the release of inflammatory factors, and regulating intestinal microecology.


Assuntos
Colite Ulcerativa , Colite , Triterpenos , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , NF-kappa B , Receptor 4 Toll-Like , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
6.
Phytomedicine ; 116: 154891, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37229891

RESUMO

BACKGROUND: Vascular remodeling plays a crucial role in the pathogenesis of several cardiovascular diseases (CVDs). Unfortunately, current drug therapies offer limited relief for vascular remodeling. Therefore, the development of innovative therapeutic strategies or drugs that target vascular remodeling is imperative. Betulinaldehyde (BA) is a triterpenoid with diverse biological activities, but its effects on vascular remodeling remain unclear. OBJECTIVE: This study aimed to investigate the role of BA in vascular remodeling and its mechanism of action, providing valuable information for future applications of BA in the treatment of CVDs. METHODS: Network pharmacology was used to predict the key targets of BA in vascular remodeling. The effect of BA on vascular remodeling was assessed in a rat model of balloon injury using hematoxylin and eosin staining, Masson staining, immunohistochemistry staining, and Western blotting. A phenotypic transformation model of vascular smooth muscle cells (VSMCs) was induced by platelet-derived growth factor-BB, and the functional impacts of BA on VSMCs were assessed via CCK-8, EdU, Wound healing, Transwell, and Western blotting. Finally, after manipulation of phospholipase C gamma1 (PLCγ1) expression, Western blotting and Ca2+ levels determination were performed to investigate the potential mechanism of action of BA. RESULTS: The most key target of BA in vascular remodeling, matrix metalloproteinase 9 (MMP9), was identified through network pharmacology screening. Vascular remodeling was alleviated by BA in vivo and its effects were associated with decreased MMP9 expression. In vitro studies indicated that BA inhibited VSMC proliferation, migration, phenotypic transformation, and downregulated MMP9 expression. Additionally, BA decreased PLCγ1 expression and Ca2+ levels in VSMCs. However, after pretreatment with a phospholipase C agonist, BA's effects on down-regulating the expression of PLCγ1 and Ca2+ levels were inhibited, while the expression of MMP9 increased compared to that in the BA treatment group. CONCLUSION: This study demonstrated the critical role of BA in vascular remodeling. These findings revealed a novel mechanism whereby BA mediates its protective effects through MMP9 regulation by inhibiting the PLCγ1/Ca2+/MMP9 signaling pathway. Overall, BA may potentially be developed into a novel medication for CVDs and may serve as a promising therapeutic strategy for improving recovery from CVDs by targeting MMP9.


Assuntos
Metaloproteinase 9 da Matriz , Remodelação Vascular , Ratos , Animais , Proliferação de Células , Metaloproteinase 9 da Matriz/metabolismo , Fosfolipase C gama/metabolismo , Becaplermina , Miócitos de Músculo Liso , Movimento Celular , Células Cultivadas
7.
Artigo em Inglês | MEDLINE | ID: mdl-36673979

RESUMO

Soil erosion is an important global environmental issue that severely affects regional ecological environment and socio-economic development. The Yellow River (YR) is China's second largest river and the fifth largest one worldwide. Its watershed is key to China's economic growth and environmental security. In this study, six impact factors, including rainfall erosivity (R), soil erosivity (K), slope length (L), slope steepness (S), cover management (C), and protective measures (P), were used. Based on the revised universal soil loss equation (RUSLE) model, and combined with a geographic information system (GIS), the temporal and spatial distribution of soil erosion (SE) in the YR from 2000 to 2020 was estimated. The patch-generating land use simulation (PLUS) model was used to simulate the land-use and land-cover change (LUCC) under two scenarios (natural development and ecological protection) in 2040; the RUSLE factor P was found to be associated with LUCC in 2040, and soil erosion in the Yellow River Basin (YRB) in 2040 under the two scenarios were predicted and evaluated. This method has great advantages in land-use simulation, but soil erosion is greatly affected by rainfall and slope, and it only focuses on the link between land-usage alteration and SE. Therefore, this method has certain limitations in assessing soil erosion by simulating and predicting land-use change. We found that there is generally slight soil erosivity in the YRB, with the most serious soil erosion occurring in 2000. Areas with serious SE are predominantly situated in the upper reaches (URs), followed by the middle reaches (MRs), and soil erosion is less severe in the lower reaches. Soil erosion in the YRB decreased 11.92% from 2000 to 2020; thus, soil erosion has gradually reduced in this area over time. Based on the GIS statistics, land-use change strongly influences SE, while an increase in woodland area has an important positive effect in reducing soil erosion. By predicting land-use changes in 2040, compared to the natural development scenario, woodland and grassland under the ecological protection scenario can be increased by 1978 km2 and 2407 km2, respectively. Soil erosion can be decreased by 6.24%, indicating the implementation of woodland and grassland protection will help reduce soil erosion. Policies such as forest protection and grassland restoration should be further developed and implemented on the MRs and URs of the YR. Our research results possess important trend-setting significance for soil erosion control protocols and ecological environmental protection in other large river basins worldwide.


Assuntos
Rios , Solo , Erosão do Solo , Modelos Teóricos , Monitoramento Ambiental/métodos , Conservação dos Recursos Naturais
8.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557939

RESUMO

Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.


Assuntos
Anticarcinógenos , Neoplasias Colorretais , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Anticarcinógenos/farmacologia , Quimioprevenção , Transdução de Sinais , Neoplasias Colorretais/patologia
9.
Ann Transl Med ; 10(24): 1394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660694

RESUMO

Background: In the era of precision therapy, early classification of breast cancer (BRCA) molecular subtypes has clinical significance for disease management and prognosis. We explored the accuracy of machine learning (ML) models for early classification of BRCA molecular subtypes through a systematic review of the literature currently available. Methods: We retrieved relevant studies published in PubMed, EMBASE, Cochrane, and Web of Science until 15 April 2022. A prediction model risk of bias assessment tool (PROBAST) was applied for the assessment of risk of bias of a genomics-based ML model, and the Radiomics Quality Score (RQS) was simultaneously used to evaluate the quality of this radiomics-based ML model. A random effects model was adopted to analyze the predictive accuracy of genomics-based ML and radiomics-based ML for Luminal A, Luminal B, Basal-like or triple-negative breast cancer (TNBC), and human epidermal growth factor receptor 2 (HER2). The PROSPERO of our study was prospectively registered (CRD42022333611). Results: Of the 38 studies were selected for analysis, 14 ML models were based on gene-transcriptomic, with only 4 external validations; and 43 ML models were based on radiomics, with only 14 external validations. Meta-analysis results showed that c-statistic values of the ML based on radiomics for the identification of BRCA molecular subtypes Luminal A, Luminal B, Basal-like or TNBC, and HER2 were 0.76 [95% confidence interval (CI): 0.60-0.96], 0.78 (95% CI: 0.69-0.87), 0.89 (95% CI: 0.83-0.91), and 0.83 (95% CI: 0.81-0.86), respectively. The c-statistic values of ML based on the gene-transcriptomic analysis cohort for the identification of the previously described BRCA molecular subtypes were 0.96 (95% CI: 0.93-0.99), 0.96 (95% CI: 0.93-0.99), 0.98 (95% CI: 0.95-1.00), and 0.97 (95% CI: 0.96-0.98) respectively. Additionally, the sensitivity of the ML model based on radiomics for each molecular subtype ranged from 0.79 to 0.85, while the sensitivity of the ML model based on gene-transcriptomic was between 0.92 and 0.99. Conclusions: Both radiomics and gene transcriptomics produced ideal effects on BRCA molecular subtype prediction. Compared with radiomics, gene transcriptomics yielded better prediction results, but radiomics was simpler and more convenient from a clinical point of view.

10.
Mol Med Rep ; 25(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958106

RESUMO

The natural incidence of primary epithelial ovarian cancer (OVC) in adult female voles of some established strains of Microtus fortis is relatively high. M. fortis OVC has some pathological similarities to human epithelial OVC, therefore M. fortis represents the latest and most valuable animal model for studying human OVC. The lack of available genetic information for M. fortis limits the use of common immunological methods; thus, high­throughput sequencing technologies have been used to reveal the mechanisms of primary OVC in M. fortis. The individuals with cancer were diagnosed using histopathologic hematoxylin and eosin staining. The present study used RNA­sequencing (RNA­seq) technology to establish a de novo assembly of the M. fortis transcriptome produced 339,830 unigenes by the short reads assembly program Trinity. Comparisons were made between OVC and healthy ovarian tissue (OV) and between fallopian tube cancer (FTC) and healthy fallopian tube (FT) tissues using RNA­seq analysis. A total of 3,434 differentially expressed genes (DEGs) were identified in OVC tissue compared with OV tissue using RNA­Seq by Expectation­Maximization software, including 1,950 significantly upregulated and 1,484 significantly downregulated genes. There were 2,817 DEGs identified in the FTC tissues compared with the FT tissue, including 1,762 significantly upregulated and 1,055 significantly downregulated genes. Pathway enrichment analysis revealed that upregulated transcripts in the OVC vs. OV groups were involved in cell growth and proliferation­associated pathways, whereas the downregulated DEGS in the OVC vs. OV groups were enriched in steroid biosynthesis­related pathways. Furthermore, the tumor suppressor gene, p53, was downregulated in the FTC and OVC compared with the FT and OV groups, respectively; whereas, genes that promoted cell migration, such as Ras­related protein Rap­1b, Ras homolog family member A and RAC1, were upregulated. In summary, to the best of our knowledge, the present study characterized the M. fortis de novo transcriptome of OV and FT tissues and to perform RNA­seq quantification to analyze the differences in healthy and cancerous OV and FT tissues. These results identified pathways that differed between cancerous and healthy M. fortis tissues. Analysis of these pathways may help to reveal the pathogenesis of primary OVC in M. fortis in future work.


Assuntos
Arvicolinae/genética , Arvicolinae/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Transcriptoma/genética , Animais , Carcinoma Epitelial do Ovário/patologia , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA