Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552699

RESUMO

Taurocholic acid (TCA) is abundant in the rat intestine and has multiple health benefits. In the gut, intestinal microbiota can transform TCA into different bile acid (BA) derivatives, with the composition of microbiota playing a crucial role in the transformation process. This study aims to investigate how lotus seed resistant starch (LRS) can regulate microbiota to influence BA transformation. A fecal fermentation study was conducted in vitro, using either LRS, high-amylose maize starch (HAMS), or glucose (GLU) to analyze microbiota composition, BA content, and metabolic enzyme activities over different fermentation times. Bioinformatics analysis found that LRS increased the relative abundance of Enterococcus, Bacillus, and Lactobacillus, and decreased Escherichia-Shigella, compared with HAMS and GLU. LRS also reduced total BA content and accelerated the conversion of TCA to cholic acid, deoxycholic acid, and other derivatives. These results reveal that LRS and GLU tend to mediate the dehydroxy pathway, whereas HAMS tends to secrete metabolic enzymes in the epimerization pathway. Therefore, the evidence that LRS may regulate TCA bioconversion may benefit human colon health research and provide an important theoretical basis, as well as offer new concepts for the development of functional foods.


Assuntos
Fermentação , Microbioma Gastrointestinal , Lotus , Sementes , Ácido Taurocólico , Lotus/metabolismo , Sementes/metabolismo , Sementes/química , Animais , Ácido Taurocólico/metabolismo , Ratos , Amido Resistente/metabolismo , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Masculino , Amido/metabolismo
2.
Environ Sci Pollut Res Int ; 31(16): 23747-23765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424247

RESUMO

The global consensus on sustainable development and environmental cooperation has prompted the promotion of trade in environmental goods (EGs) for green growth. This study delves into the diversity of EGs trade patterns, using decomposed environmental technology similarity indicators to reveal the technological drivers. Linking innovation indicators to trade performance in EGs provides new insights into the determinants of inequality in environmental governance cooperation. Based on an extended gravity model, we empirically analyze their impact on bilateral EGs trade flows among 176 countries over the period 2002-2019. The study finds that (1) the global EGs trade network presents a "core-periphery" structure, with increased network density and participation of developing countries. (2) Technology similarity contributes significantly to EGs trade. Compared to competition, technology complementarity has a greater impact on EGs trade flows. (3) The influence of technology similarity varies across trade patterns and product complexity explains the mechanisms, with technology complementarity promoting more trade in high-complexity products, mainly concentrated in the trade from Northern countries, while technology competition greatly promotes the export of low-complexity products from the South. (4) Technology similarity helps to overcome information barriers in EGs trade, and its trade-enhancing effects exhibit geographical regionalization. The findings offer empirical evidence on the technological drivers of EGs trade and provide policy implications for fostering inclusive global environmental governance and enhancing the competitive advantages of Southern countries, fostering more opportunities for green growth.


Assuntos
Comércio , Conservação dos Recursos Naturais , Política Ambiental , Internacionalidade , Tecnologia
3.
Oral Dis ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376115

RESUMO

OBJECTIVES: To investigate the inhibitory effects of STM2457, which is a novel METTL3 (m6 A writer) inhibitor, both as a monotherapy and in combination with anlotinib, in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. MATERIALS AND METHODS: The efficacy of STM2457 or STM2457 plus anlotinib was evaluated using two OSCC cell lines by CCK8, transwell, colony formation, would-healing, sphere formation, cell cycle, apoptosis assays, and nude mice tumor xenograft techniques. The molecular mechanism study was carried out by western blotting, qRT-PCR, MeRIP-qPCR, immunofluorescence, and immunohistochemistry. RESULTS: STM2457 combined with anlotinib enhanced inhibition of cellular survival/proliferation and promotion of apoptosis in vitro. Moreover, this combinatorial approach exerted a notable reduction in stemness properties and EMT (epithelial-mesenchymal transition) features of OSCC cells. Remarkably, in vivo studies validated the efficacy of the combination treatment. Mechanistically, our investigations revealed that the combined action of STM2457 and anlotinib exerted downregulatory effects on EGFR (epidermal growth factor receptor) expression in OSCC cells. CONCLUSIONS: The combination of STM2457 and anlotinib targeting EGFR exerted a multiple anti-tumor effect. In near future, anlotinib combined with STM2457 may provide a novel insight for the treatment of OSCC.

4.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888453

RESUMO

Oxidative stress and abnormal glucose metabolism are the important physiological mechanisms in the occurrence and development of diabetes. Antioxidant peptides have been reported to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have focused on peptides from marine bone collagen. In this study, we prepared the peptides with a molecular weight of less than 1 kD (HNCP) by enzymolysis and ultrafiltration derived from Harpadon nehereus bone collagen. Furthermore, the effects of HNCP on blood glucose, blood lipid, liver structure and function, oxidative stress, and glucose metabolism were studied using HE staining, kit detection, and Western blotting experiment in streptozocin-induced type 1 diabetes mice. After the 240 mg/kg HNCP treatment, the levels of blood glucose, triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) in streptozotocin-induced diabetes mice decreased by 32.8%, 42.2%, and 43.2%, respectively, while the levels of serum insulin and hepatic glycogen increased by 142.0% and 96.4%, respectively. The antioxidant enzymes levels and liver function in the diabetic mice were markedly improved after HNCP intervention. In addition, the levels of nuclear factor E2-related factor 2 (Nrf2), glucokinase (GK), and phosphorylation of glycogen synthase kinase-3 (p-GSK3ß) in the liver were markedly up-regulated after HNCP treatment, but the glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase1 (PEPCK1) were down-regulated. In conclusion, HNCP could attenuate oxidative stress, reduce blood glucose, and improve glycolipid metabolism in streptozocin-induced type 1 diabetes mice.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Camundongos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Estreptozocina , Glicemia , Antioxidantes/química , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Fígado , Glucose/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo
5.
Crit Rev Microbiol ; : 1-18, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37766478

RESUMO

Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.

6.
Carbohydr Polym ; 314: 120939, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173019

RESUMO

We investigated the hyperlipidemic effect of different doses of lotus seed resistant starch (low-, medium and high-dose LRS, named as LLRS, MLRS and HLRS, respectively) in hyperlipidemic mice using gut microbiota-metabolic axis compared to high-fat diet mice (model control group, MC). Allobaculum was significantly decreased in LRS groups compared to MC group, while MLRS promoted the abundance of norank_f_Muribaculaceae and norank_f_Erysipelotrichaceae. Moreover, supplementation of LRS promoted cholic acid (CA) production and inhibited deoxycholic acid compared to MC group. Among, LLRS promoted formic acid, MLRS inhibited 20-Carboxy-leukotriene B4, while HLRS promoted 3, 4-Methyleneazelaic acid and inhibited Oleic acid and Malic acid. Finally, MLRS regulate microbiota composition, and this promoted cholesterol catabolism to form CA, which inhibited serum lipid index by gut microbiota-metabolic axis. In conclusion, MLRS can promote CA and inhibit medium chain fatty acids, so as to play the best role in lowering blood lipids in hyperlipidemia mice.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Amido Resistente , Lipídeos , Dieta Hiperlipídica , Sementes
7.
Plant Dis ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856643

RESUMO

Elaeagnus conferta Roxb. is a perennial evergreen climbing shrub and is mainly native to India, Vietnam, Malaysia, and South China (Gupta & Singh, 2021). Various parts of this plant are used to treat multiple diseases(Gupta et al., 2021). Between during the months of March and April of 2021, in Kunming city of grower fields, Yunnan Province (N 25°02'; E 102°42'), southwest China. Some postharvest E. conferta fruits showed brown spots of decay with a greyish mycelium, which symptom only appears on fruit, and did not find it on this plant. The incidence of this disease in postharvest E. conferta fruits ranges from 45 % to 65 % in natural conditions. This pathogen is harmful and causes many plant diseases. Such as rice, oriental persimmon, pear, panicles of mango, and so on (Cho & Shin, 2004; Guillén-Sánchez et al., 2007; Lee et al., 2009). The infected fruit samples surface was disinfected with 75 % ethanol and 0.3 % NaClO for 30 s and 2 min respectively, then aseptic water washing three times. The fruit tissue is rich in carbohydrates and water content, which aid the growth of fungal species. Putting these diseased tissues on a potato dextrose agar (PDA) medium, cultured at 25 ± 1 ℃ for 7 days. The colonies grow on the PDA medium, then separated and puried again. Three pure cultures (YNGH01, YNGH03, YNGH05) were obtained, which were stored in 15 % glycerol at -80 ℃ refrigerator in the State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University. After 7 days of cultivation, the colonies were round and the diameter attained up to 38 mm, the surface of the colony showed tiled, fluffy, with a velvet-like texture, greyish-green to smoke-gray, slightly raised in the middle, the edges were radial hollow and wrinkle (Fig. 1A). Conidiophores were solitary, erect, unbranched or rarely branched, slightly flexuous at the apex, septate, dark brown, 254 to 680 µm long, 3.6 to 4.5 µm wide, top of the conidiophores or the rostral were slightly swollen (Fig. 1B). Conidia were light gray or grey, solitary or bispora, irregular in shape and size (Fig. 1C), nearly circular (3.21 × 3.31 µm), oval to lemon-shaped (6.59 × 3.21 µm) or elliptical (8.35 × 4.65 µm). The CTAB method extracts 3 isolates (YNGH01, YNGH03, YNGH05) genomic DNA (Aboul-Maaty & Oraby, 2019). To confirm identity with molecular identification, performed by three different genomic DNA regions, fragments of internal transcribed spacer (ITS), partial translation elongation factor-1 alpha (TEF-1α), and actin (ACT) genomic regions. These genomic DNA were amplified with primers ITS1/4, EF1-728F/986R, and ACT-512F/783R, respectively (Carbone & Kohn, 1999). The sequences of these isolates were uploaded to GenBank (YNGH01: ON753810, ON868696, ON912090 YNGH03: ON753812, ON868698, ON912092, and YNGH05: ON753814, ON868700, ON912094). NCBI's BLASTn search of those ITS sequences showed 99.81% similar to C. tenuissimum (MG873077.1), and sequences TEF-1α and ACT were 100% identical to several isolates of C. tenuissimum (OM256526.1 and MT154171.1). Combined the ITS region, TEF-1α, and actin (ACT) genomic regions of isolates YNGH01, YNGH03 and YNGH05 to construct a phylogenetic tree with MEGA11. Maximum likelihood phylogenetic analyses further confirmed the results (Fig. 2)(Santos et al., 2020). Healthy and mature E. conferta fruits were used for pathogenicity test. Pathogens were washed with sterilized water at a final concentration of 2× 106 spores/mL (Jo et al., 2018). The test was divided into A and B groups (A: The surface of fruits was pierced with a sterilized needle that carried pathogenic fungus of final concentration at 2×106 spores/mL B: Sprayed at the concentration of 2×106 spores/mL on fruits). The control fruits were treated with sterilized water and stored at 25 ± 1 ℃ with a relative humidity of 80 %, average group with 10 fruits in this test, which was repeated three times. After 7 days, the fruits of group A were initially sesame seed size of the disease spots, nearly round, irregular, with grayish-brown spots, and slightly depressed. Later, the lesion gradually turns dark brown (Fig. 1D). And group B began with small patches of brown fungal growth on the pericarp, with the development of the disease, the necrotic spots enlarged and developed irregular and coalesced, the color of spots became gray or black gradually (Fig. 1E). The symptoms were similar to previously observed and the pathogen was reisolated and identified as C. tenuissimum. Control fruits were healthy (Fig. 1F). The pathogens test fulfilled Koch's postulates. According to morphology (Bensch et al., 2012), rDNA-ITS, TEF-1α, and ACT sequence analysis, phylogenetic analysis, and pathogenicity test, the pathogen was identified as C. tenuissimum. To our knowledge, this is the first report of C. tenuissimum occurring on E. conferta fruits in China.

8.
Microbiol Spectr ; 11(1): e0271322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625661

RESUMO

Infection by fungal pathogens is the main factor leading to postharvest rot and quality deterioration of fruit and vegetables. Rotting caused by Alternaria alternata is a concerning disease for numerous crops in both production and postharvest stages, especially tomato black spots. In this study, the double Petri dish assay showed that the VOCs of Ceratocystis fimbriata WJSK-1 and Mby inhibited the mycelial growth of fungal pathogen A. alternata, with a percentage inhibition of 52.2% and 42.9%. Then, HS-SPME-GC-MS technology was used to analyze the volatiles produced by two strains of C. fimbriata (WJSK-1, Mby), a total of 42 volatile single components were obtained, the main volatiles compounds identified include nine esters, 10 ketones, five alcohols, four aldehydes, three aromatic hydrocarbons, three heterocycles, four alkenes, three alkanes, and one acid. After that, the antifungal activity of a single volatile component was evaluated both in vitro and in vivo, four single components with antifungal effects were screened out, namely, benzaldehyde, nonanal, 2-Phenylethanol and isoamyl acetate, with IC50 values show the smallest values for benzaldehyde and nonanal at 0.11 µL mL-1, 0.04 µL mL-1. A. alternata exposed to VOCs had abnormal morphology for hyphae, delayed sporulation, and inhibited spore germination. In vivo experiment shows that the four volatile components can effectively suppress disease incidence on fungal-inoculated fruit; the two aldehydes (benzaldehyde and nonanal) have more prominent effect on delaying fruit onset of disease. The results showed that VOCs produced by C. fimbriata have potential as a fumigant for controlling black rot in cherry tomatoes. IMPORTANCE In this research, the volatile organic compounds (VOCs) produced based on C. fimbriata exhibited strong antifungal activity against the fungal pathogen A. alternata. Our aim is to explore their bacteriostatic components. HS-SPME-GC-MS technology was used to analyze the volatiles produced by the C. fimbriata strain (WJSK-1, Mby). Postharvest cherry tomato fruit black rot caused by A. alternata was treated both in vitro and in vivo, with pure individual components produced by C. fimbriata. The benzaldehyde, nonanal, 2-Phenylethanol, and isoamyl acetate from C. fimbriata can effectively inhibit growth of A. alternata, and delay disease. It has the potential to be developed as a new type of fumigant, a potential replacement for fungicides in the future.


Assuntos
Álcool Feniletílico , Solanum lycopersicum , Antifúngicos/farmacologia , Benzaldeídos , Frutas/microbiologia , Aldeídos
9.
Plant Dis ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607324

RESUMO

Strawberry (Fragaria × ananassa Duch.) is an important and very popular fruit around the world because they have unique taste, special fragrance and rich nutrition (Hashmi et al., 2013; Neri et al., 2015). However, mature fruits have the characteristics of smooth texture, high softening rate and re-breathing rate were easily infected by various pathogens (Lara et al., 2004). In June 2022, a few postharvest strawberry fruits were found to rot, soften and cover with a green or yellow mycelium in Kunming city, Yunnan Province (25°02' N; 102°42' E), southwest China. The symptoms of fruits initially observed a tiny white mycelium and water damage, then the mycelium became yellow, with water-soaked areas extended rapidly. Eventually, the entire fruit was covered with yellow, dense mycelium (Fig. 1A, B). The incidence of this postharvest decay in strawberry fruits ranged from 35 to 45% and caused serious loss. This pathogen was isolated from diseased fruit tissues, transferred to potato dextrose agar (PDA) and malt extract agar (MEA), and incubated in the dark at 25 ± 1 ℃. Then purify and separate again. Four pure strains (BDFM1 to BDMF4) were obtained and stored in 15% glycerol at -80 ℃ in the State Key Laboratory for Conservation and Utilization of Bio-Resources Room 1012, Yunnan Agricultural University. On PDA, the colonies were initially white and the reverse was light yellow, after 5 days, the hyphae became golden yellow, and the diameter of the colony reached 5 cm (Fig. 1C). On MEA, the colonies were initially light yellow, and after 4 days, yellow-orange and the reverse were yellow to dark yellow (Fig. 1D). Unbranched sporangiophores are up to 26.7-30.8 µm diameter with columellae frequently pyriform, oblong or ellipsoid, obovoid (43- 60 × 90-135 µm), colorless or yellowish (Fig. 1E), simple or with long or short sympodial branches. Sporangia yellow, globose or subglobose, 55.3-123.7 µm in diameter, wall echinulate, which are spherical formed at the top of the main sporangiophore and each branch (Fig. 1F), Sporangiospores yellow, which are spherical (5.0-8.5 × 5.5-9 µm), oval (21.5-7 × 11-20 µm), thin and smooth-walled. To further identify the fungus, the total genomic DNA was extracted from four strains using the CATB method (Aboul-Maaty & Oraby, 2019). The partial fragments of internal transcribed spacer (ITS), and partial 28S rRNA gene sequence were amplified with the primers ITS1/ITS4, and LR0R/LR5 respectively. These sequences of strains BDFM1 to BDMF4 were uploaded to NCBI GenBank as accessions ON951610, ON951611, ON951612 and ON951613, OP430532, OP430533 OP430534 and OP430535. Using NCBI's BLASTn tools, the nucleotide sequences of strains showed 96.12 - 99.21 % identity to JN206177 (M. inaequisporus strain CBS 496.66). BDFM1 to BDMF4 isolates were used to MEGA11 construct a phylogenetic tree. Maximum likelihood phylogenetic analyses (Fig. 2) and phylogenetic tree from Bayesian method (Fig. 3) further confirmed the results. Pathogenicity tests were conducted with healthy strawberry fruits. We selected two stains (BDFM1, BDFM2) from four same isolates for this test, cultured on MEA for 4 days, then washed with sterilized water and the spore suspensions were adjusted at 1.0 × 106 spores/ml. Ten fruits were surface-disinfected with 75% alcohol for 15 s, rinsed with sterile water 3 times, then air-dried, and sprayed with the spore suspension on the surface, while the control fruits were sprayed with sterile water. The fruits were incubated at 26 °C with 90% relative humidity in a plastic container. This test was performed in triplicate. After 2 days, the fruits sprayed with the spore suspensions showed light yellow hyphae (Fig. 1H), which covered one-third of the fruit surface (Fig. 1G). After 4 days, yellow-orange mycelia covered the entire fruit, with yellow oil-droplets at the tip of the mycelium (Fig. I). Control fruits remained healthy. The fungus was re-isolated and identified as Mucor inaequisporus thus completing Koch's postulates. Mucor inaequisporus was identified by symptoms, morphology (de Freitas et al., 2021), rDNA-ITS sequence analysis, and pathogenicity test. As we know, this is the first report of M. inaequisporus on strawberry fruits in China.

10.
Food Chem ; 404(Pt A): 134599, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444019

RESUMO

Ordinary and hyperlipidemic rats were gavaged with lotus seed resistant starch (LRS), and the structure of the small intestinal flora and bile acids composition were determined for four groups of rats to construct a relationship network diagram between different bacterial genera, bile acids and blood lipid profiles, revealing a microbial mechanism for the lipid-lowering effect of LRS in hyperlipidemic rats. LRS inhibited the growth of Romboutsia, Bacillus, Blautia, norank_f__Muribaculaceae and norank_f__Eubacterium_coprostanoligenes_group in hyperlipidemic rats. Meanwhile LRS promoted the production of primary bile acids (CA, CDCA, ß-MCA) and secondary bile acids (LCA, UDCA), and reduced the contents of TCA, Dehydro-LCA, isoLCA, LCA-3-S and THDCA in hyperlipidemic rats. Furthermore, Blautia, norank_f__Muribaculaceae and norank_f__Eubacterium_coprostanoligenes_group were positively correlated with Dehydro-LCA, isoLCA, TCA, LCA-3-S, TCHO, TG and LDL-C. In summary, LRS improves blood lipid levels by regulating small intestinal flora and accelerating the breakdown of cholesterol into bile acids in the liver.


Assuntos
Hiperlipidemias , Lotus , Amido Resistente , Sementes , Animais , Ratos , Bacteroidetes , Ácidos e Sais Biliares , Clostridiales , Microbioma Gastrointestinal/efeitos dos fármacos , Amido Resistente/farmacologia , Sementes/química , Hiperlipidemias/microbiologia , Hiperlipidemias/terapia
11.
ACS Omega ; 7(49): 44796-44803, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530242

RESUMO

Acute liver injury (ALI) and acute kidney injury (AKI) are significantly affected by the antioxidant status. In the present study, the protective effect and mechanism of the collagen peptide Phe-Leu-Ala-Pro (FLAP) in mice with ALI and AKI induced by carbon tetrachloride (CCl4) were examined. The results showed that FLAP effectively improved the liver mass index, the renal mass index, and the histopathological morphology. FLAP treatment significantly decreased the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea nitrogen (BUN), and creatinine (CRE) but increased the activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). The protein expression levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), p-protein kinase B (p-AKT), and p-phosphatidylinositol-3-kinase (p-PI3K) in the liver and kidneys were significantly up-regulated after FLAP treatment. FLAP down-regulated the levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-α (TNF-α), and nuclear factor-κ B (NF-κB) in liver and kidney tissues. Thus, FLAP may play a protective role in ALI and AKI by attenuating oxidative stress and inflammation mediated by the Nrf2/anti-response element (ARE) and PI3K/AKT/NF-κB pathways.

12.
Front Microbiol ; 13: 1034939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338050

RESUMO

Microorganism-produced volatile organic compounds (VOCs) are considered promising environmental-safety fumigants in food preservation. In this study, the VOCs from fungal Ceratocystis fimbriata strains (WSJK-1, Mby) were tested against postharvest fungi Monilinia laxa, Fusarium oxysporum, Monilinia fructicola, Botrytis cinerea, Alternaria solani, and Aspergillus flavus in vitro. The mycelial growth was significantly inhibited, in particular M. fructicola and B. cinerea (76.95, 76.00%), respectively. VOCs were identified by headspace solid-phase microextraction coupled with Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS); 40 compounds were identified. The antifungal activity of 21 compounds was tested by the minimum inhibitory concentrations (MIC) value. Benzaldehyde, 2-Phenylethanol, and 1-Octen-3-ol showed strong antifungal activity with the MIC in vitro ranging from 0.094 to 0.284 ml L-1 depending on the pathogen tested. The optical microscope showed serious morphological damage, including cell deformation, curling, collapse, and deficiency in mycelial or conidia cell structures treated with C. fimbriata VOCs and pure compounds. In vivo tests, C. fimbriata VOCs decreased brown rot severity in peaches, and compounds Benzaldehyde and 2-Phenylethanol could reduce peach brown rot in peaches at 60 µl L-1. The VOCs produced by C. fimbriata strain have good antifungal effects; low concentration fumigation could control peach brown rot. Its fragrance is fresh, safe, and harmless, and it is possible to replace chemical fumigants. It could be used as a potential biofumigant to control fruit postharvest transportation, storage, and food preservation. To the best of our knowledge, this is the first report on the antifungal activity and biocontrol mechanism of VOCs produced by C. fimbriata.

13.
Front Nutr ; 9: 989042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017223

RESUMO

The structural properties and physicochemical characteristics of lotus seed cross-linked resistant starches (LSCSs; LS-0CS, LS-1CS, LS-2CS, LS-4CS, LS-6CS, LS-8CS, LS-10CS, and LS-12CS) with different concentrations of cross-linking agents were investigated. The degrees of cross-linking of LSCSs increased along with the amount of cross-linking agent. The higher the degree of cross-linking, the greater the degree of LSCSs granule agglomeration. The occurrence of the cross-linking reaction was confirmed by the appearance of P = O at 1,250 cm-1 as assessed by FT-IR, and the covalent bonds formed by the phosphate group in LSCSs were mainly composed of distarch monophosphate (DMSP) as determined by 31P NMR. As the crosslinking degree increased, the peak strength of DMSP in starch was stronger and the specific gravity of DMSP was larger. Among the samples, LS-12CS had the highest cross-linking degree, with a greater specific gravity of DMSP. Moreover, the solubility levels of LSCSs decreased and the thermal stability and anti-digestive properties improved as the cross-linking degree increased, which was correlated with the degree of agglomeration and DMSP in LSCSs. The RS content of LS-12CS was 48.95 ± 0.86%.

14.
Int J Biol Macromol ; 215: 79-91, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718147

RESUMO

We investigated the potential efficacy and underlying mechanisms of Lotus seed Resistant Starch (LRS) for regulating hyperlipidemia in mice fed a High-fat Diet (HFD). Mouse were fed a normal diet (Normal Control group, NC group), HFD alone (MC group), HFD plus lovastatin (PC group), or HFD with low/medium/high LRS (LLRS, MLRS, and HLRS groups, respectively) for 4 weeks. LRS supplementation significantly decreased body weight and significantly reduced serum levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipopro-tein cholesterol compared with the MC group. LRS also significantly alleviated hepatic steatosis, especially in the MLRS group, which also showed a significantly reduced visceral fat index. LLRS supplementation significantly regulated genes associated with glycerolipid metabolism and steroid hormone biosynthesis (Lpin1 and Ugt2b38), MLRS significantly regulated genes related to fatty acid degradation, fatty acid elongation, and glycerolipid metabolism (Lpin1, Hadha, Aldh3a2, and Acox1), whereas HLRS significantly regulated genes related to fatty acid elongation and glycerolipid metabolism (Lpin1, Elovl3, Elovol5, and Agpat3). The fatty acid-degradation pathway regulated by MLRS thus exerts better control of serum lipid levels, body weight, visceral fat index, and liver steatosis in mice compared with LLRS- and HLRS-regulated pathways.


Assuntos
Fígado Gorduroso , Hiperlipidemias , Animais , Peso Corporal , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidato Fosfatase/metabolismo , Amido Resistente
15.
Pest Manag Sci ; 78(1): 274-286, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480397

RESUMO

BACKGROUND: Elevated CO2 can directly affect the toxicity of insecticides to insects and the physiological response of insects to insecticides. Frankliniella occidentalis and F. intonsa are highly destructive pests that target horticultural crops. Spinetoram is an effective pesticide against thrips. This study sought to explore the effect of elevated CO2 on efficacy of spinetoram against F. occidentalis and F. intonsa and effect of the spinetoram on activities of protective and detoxifying enzymes under elevated CO2 . Notably, these enzymes can be exploited in further studies to develop interventions for thrips resistance management. RESULTS: Toxicity bioassay showed that the LC50 values of F. occidentalis and F. intonsa exposed to spinetoram at elevated CO2 (800 µL L-1 concentration) for 48 h was 0.08 and 0.006 mg L-1 , respectively, which is 0.62 and 0.75 times of the values at ambient CO2 (400 µL L-1 concentration). The findings showed that elevated CO2 decreased activities of the superoxide dismutase and acetylcholinesterase in thrips, while increasing the activities of carboxylesterase and glutathione S-transferase. However, spinetoram increased activities of protective and detoxifying enzymes in both thrips under the two CO2 levels. Elevated CO2 and spinetoram affect the physiological enzyme activity in thrips synergistically, and the activities of analyzed enzymes were generally higher in F. occidentalis than in F. intonsa. CONCLUSION: Elevated CO2 amplifies the efficacy of spinetoram on thrips, F. intonsa is more susceptibility to spinetoram than F. occidentalis and the latter showed better adaptation to adverse conditions than the former. © 2021 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/farmacologia , Macrolídeos/farmacologia , Tisanópteros , Acetilcolinesterase , Animais , Tisanópteros/efeitos dos fármacos , Tisanópteros/enzimologia
16.
Protein Cell ; 13(7): 513-531, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33108584

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Assuntos
Praguicidas , Transcriptoma , Animais , China , Genômica , Humanos , Masculino , Spodoptera/genética
17.
Insects ; 12(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821798

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.

18.
Front Neurorobot ; 15: 739077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539373

RESUMO

Tujia brocades are important carriers of Chinese Tujia national culture and art. It records the most detailed and real cultural history of Tujia nationality and is one of the National Intangible Cultural Heritage. Classic graphic elements are separated from Tujia brocade patterns to establish the Tujia brocade graphic element database, which is used for the protection and inheritance of traditional national culture. Tujia brocade dataset collected a total of more than 200 clear Tujia brocade patterns and was divided into seven categories, according to traditional meanings. The weave texture of a Tujia brocade is coarse, and the textural features of the background are obvious, so classical segmentation algorithms cannot achieve good segmentation effects. At the same time, deep learning technology cannot be used because there is no standard Tujia brocade dataset. Based on the above problems, this study proposes a method based on an unsupervised clustering algorithm for the segmentation of Tujia brocades. First, the cluster number K is calculated by fusing local binary patterns (LBP) and gray-level co-occurrence matrix (GLCM) characteristic values. Second, clustering and segmentation are conducted on each input Tujia brocade image by adopting a Gaussian mixture model (GMM) to obtain a preliminary segmentation image, wherein the image yielded after preliminary segmentation is rough. Then, a method based on voting optimization and dense conditional random field (DenseCRF) (CRF denotes conditional random filtering) is adopted to optimize the image after preliminary segmentation and obtain the image segmentation results. Finally, the desired graphic element contour is extracted through interactive cutting. The contributions of this study include: (1) a calculation method for the cluster number K wherein the experimental results show that the effect of the clustering number K chosen in this paper is ideal; (2) an optimization method for the noise points of Tujia brocade patterns based on voting, which can effectively eliminate isolated noise points from brocade patterns.

19.
Bioengineered ; 12(1): 2164-2174, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34098850

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common tumor of the oral cavity. Studies have shown that exosomal miRNAs from cancer cells play an important role in mediating the cellular environment. The objective was to investigate the effect of OSCC-derived exosomes microRNA-221 (miR-221) in OSCC. We used quantitative real-time PCR (qRT-PCR) and western blotting to determine PIK3R1 and miR-221 expressions in OSCC tissue or peripheral blood serum. Exosomes of OSCC cell line CAL27 were extracted and characterized. Exosomal miR-221 expression was detected by qRT-PCR. Dual-luciferase was performed to validate the targeted regulatory relationship of miR-221 on PIK3R1. Transwell and tube formation assay were applied to detect the effect of OSCC-derived exosomal miR-221 on HUVEC migration and angiogenesis. qRT-PCR confirmed that PIK3R1 expression was downregulated in OSCC tissue and cell line, while miR-221 expression was upregulated. miR-221 expression in OSCC cell line-derived exosome elevated. miR-221 could target and negatively regulate PIK3R1 expression. In addition, OSCC-derived miR-221 could promote HUVEC migration and angiogenesis. In conclusion, OSCC-derived exosomal miR-221 could target and negatively regulate PIK3R1 expression, as well as promote vascular endothelial cell migration and angiogenesis.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Exossomos/metabolismo , MicroRNAs/genética , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Exossomos/química , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neovascularização Patológica/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
20.
Pest Manag Sci ; 74(12): 2773-2782, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29737621

RESUMO

BACKGROUND: Elevated CO2 can alter the leaf damage caused by insect herbivores. Frankliniella occidentalis (Pergande) is highly destructive invasive pest of crop production worldwide. To investigate how elevated CO2 affects F. occidentalis fed with Phaseolus vulgaris and, in particular, the interaction between plant defense and thrips anti-defense, nutrient content and antioxidant enzyme activity of P. vulgaris were measured, as well as the detoxifying enzyme activity of adult thrips. RESULTS: Elevated CO2 increased the soluble sugar, soluble protein and free amino acid content in non thrip-infested plants, and decreased superoxide dismutase (SOD) and peroxidase (POD) activity in these plants. Feeding thrips reduced the nutrient content in plants, and increased their SOD, catalase and POD activity. Variations in nutrient content and antioxidant enzyme activity in plants showed an opposite tendency over thrip feeding time. After feeding, acetylcholinesterase, carboxylesterase, and mixed-function oxidase activity in thrips increased to counter the plant defenses. Greater thrip densities induced stronger plant defenses and, in turn, detoxifying enzyme levels in thrips increased over thrip numbers. CONCLUSION: Our study revealed that F. occidentalis can induce not only an antioxidant-associated plant defense, but also detoxifying enzymes in thrips. Elevated CO2 might both enhance plant defense against thrip attack, and increase thrip anti-defense against plant defenses. © 2018 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/farmacologia , Espécies Introduzidas , Phaseolus/efeitos dos fármacos , Tisanópteros/efeitos dos fármacos , Tisanópteros/fisiologia , Animais , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Phaseolus/enzimologia , Phaseolus/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA