Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177408

RESUMO

Facial expression methods play a vital role in human-computer interaction and other fields, but there are factors such as occlusion, illumination, and pose changes in wild facial recognition, as well as category imbalances between different datasets, that result in large variations in recognition rates and low accuracy rates for different categories of facial expression datasets. This study introduces RCL-Net, a method of recognizing wild facial expressions that is based on an attention mechanism and LBP feature fusion. The structure consists of two main branches, namely the ResNet-CBAM residual attention branch and the local binary feature (LBP) extraction branch (RCL-Net). First, by merging the residual network and hybrid attention mechanism, the residual attention network is presented to emphasize the local detail feature information of facial expressions; the significant characteristics of facial expressions are retrieved from both channel and spatial dimensions to build the residual attention classification model. Second, we present a locally improved residual network attention model. LBP features are introduced into the facial expression feature extraction stage in order to extract texture information on expression photographs in order to emphasize facial feature information and enhance the recognition accuracy of the model. Lastly, experimental validation is performed using the FER2013, FERPLUS, CK+, and RAF-DB datasets, and the experimental results demonstrate that the proposed method has superior generalization capability and robustness in the laboratory-controlled environment and field environment compared to the most recent experimental methods.


Assuntos
Reconhecimento Facial , Humanos , Projetos de Pesquisa , Ambiente Controlado , Face , Laboratórios , Expressão Facial
2.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678055

RESUMO

Pressure sensors urgently need high-performance sensing materials in order to be developed further. Sensitivity and creep are regarded as two key indices for assessing a sensor's performance. For the design and optimization of sensing materials, an accurate estimation of the impact of several parameters on sensitivity and creep is essential. In this study, sensitivity and creep were predicted using the response surface methodology (RSM) and support vector regression (SVR), respectively. The input parameters were the concentrations of nickel (Ni) particles, multiwalled carbon nanotubes (MWCNTs), and multilayer graphene (MLG), as well as the magnetic field intensity (B). According to statistical measures, the SVR model exhibited a greater level of predictability and accuracy. The non-dominated sorting genetic-II algorithm (NSGA-II) was used to generate the Pareto-optimal fronts, and decision-making was used to determine the final optimal solution. With these conditions, the optimized results revealed an improved performance compared to the earlier study, with an average sensitivity of 0.059 kPa-1 in the pressure range of 0-16 kPa and a creep of 0.0325, which showed better sensitivity in a wider range compared to previous work. The theoretical sensitivity and creep were relatively similar to the actual values, with relative deviations of 0.317% and 0.307% after simulation and experimental verification. Future research for transducer performance optimization can make use of the provided methodology because it is representative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA