Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 1367-1381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529168

RESUMO

Objective: Diabetic kidney disease (DKD) patients with anemia face an elevated risk of glomerular filtration rate decline. However, the association between hemoglobin and estimated Glomerular Filtration Rate (eGFR) progression remains to be elucidated. Methods: A retrospective cohort of 815 subjects with DKD was followed from January 2010 to January 2023. A Cox proportional hazard regression model was utilized to explore the predictive role of hemoglobin in renal outcomes. Renal outcomes were defined as a composite endpoint, including a 50% decline in eGFR from baseline or progression to End-Stage Renal Disease (ESRD). To unveil any nonlinear relationship between hemoglobin and renal outcomes, Cox proportional hazard regression with cubic spline functions and smooth curve fitting was conducted. Additionally, subgroup analyses were performed to identify specific patient populations that might derive greater benefits from higher hemoglobin. Results: Among the 815 DKD subjects, the mean age was 56.482 ± 9.924 years old, and 533 (65.4%) were male. The mean hemoglobin was 121.521±22.960 g/L. The median follow-up time was 21.103±18.335 months. A total of 182 (22.33%) individuals reached the renal composite endpoint during the study period. After adjusting for covariates, hemoglobin was found to exert a negative impact on the renal composite endpoint in patients with DKD (HR 0.975, 95% CI [0.966, 0.984]). A nonlinear relationship between hemoglobin and the renal composite endpoint was identified with an inflection point at 109 g/L. Subgroup analysis unveiled a more pronounced association between hemoglobin and renal prognosis in males. Conclusion: Hemoglobin emerges as a predictive indicator for the renal prognosis of diabetic kidney disease in China. This study reveals a negative and non-linear relationship between hemoglobin levels and the renal composite endpoint. A substantial association is noted when hemoglobin surpasses 109 g/L in relation to the renal composite endpoint.

2.
Environ Pollut ; 344: 123394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266699

RESUMO

Microplastics (MPs) are ubiquitously present in source water and undergo ultraviolet (UV) aging in aquatic environments before entering drinking water treatment plants. The presence of MPs in drinking water can impact the formation of halogenated disinfection byproducts (DBPs) during chlorine disinfection, yet the exact effect of MPs on DBP formation remain unclear. In this study, we conducted an investigation into the influence of non-aged and UV-aged MPs on halogenated DBP formation in drinking water and unveiled the underlying mechanisms. In comparison to source water samples devoid of MPs, the total organic halogen concentration was reduced by 19%-43% and 4%-13% in the drinking water samples containing non-aged and aged MPs, respectively. The differing effects on halogenated DBP formation can be attributed to the alternation in physical and chemical characteristics of MPs following UV aging. Aged MPs exhibited larger surface area with signs of wear and tear, heightened hydrophilicity, surface oxidation, increased oxygen-containing functional groups and dechlorination during the UV aging process. Both non-aged and aged MPs possess the capability to adsorb natural organic matter, leading to a reduction in the concentration of DBP precursors in the source water. However, the release of organic compounds from aged MPs outweighed the adsorption of organics. Furthermore, as a result of the surface activation of MPs through the UV aging process, the aged MPs themselves can also serve as DBP precursors. Consequently, the presence of halogenated DBP precursors in source water increased, contributing to a higher level of DBP formation compared to source water containing non-aged MPs. Overall, this study illuminates the intricate relationship among MPs, UV aging, and DBP formation in drinking water. It highlights the potential risks posed by aged MPs in influencing DBP formation and offers valuable insights for optimizing water treatment processes.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Cloro/química
3.
Med Oncol ; 41(1): 29, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148364

RESUMO

Guanine nucleotide-binding protein-like 3-like (GNL3L), a conserved GTP-binding nucleolar protein, participates in regulating cell proliferation, and associates with tumorigenesis and poor prognosis in several kind of cancers. However, the role of GNL3L in modulating autophagy remains unclear. Here, we verified that GNL3L was higher expressed in esophageal cancer (ESCA) biopsies than that in the corresponding normal biopsies by a human ESCA tissue array. Utilizing immunoblotting and real-time PCR assays, we analyzed the expression of GNL3L in several ESCA cell lines, and it was highly expressed in KYSE410 cells and rarely expressed in KYSE150 cells, respectively. GNL3L overexpression promoted cell viability and cell proliferation in KYSE150 cells. On the contrary, silencing of GNL3L resulted in opposite phenotypes in KYSE410 cells. Furthermore, GNL3L level correlated with autophagic flux and influenced the levels of autophagy core proteins. Meanwhile, GNL3L also affected the AMPK signaling pathway, which is a pivotal signaling pathway for autophagy regulation. In the GNL3L-silenced cells, the AMPK agonist AICAR partly rescued the autophagic flux. Inversely, both pharmacologically and genetically deprivation of AMPK attenuated the autophagic flux induced by GNL3L overexpression. Moreover, AMPK activity alteration influenced the effect of GNL3L in regulating cell proliferation. Collectively, these findings suggest that GNL3L positively regulates cell proliferation and autophagy in ESCA cells via regulating the AMPK signaling, making itself a promising therapeutic target for ESCA.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Esofágicas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Autofagia , Neoplasias Esofágicas/genética , Proteínas Nucleares/metabolismo
4.
J Transl Med ; 21(1): 624, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715242

RESUMO

OBJECTIVE: Triglyceride glucose index (TyG index) has been recommended as an alternative indicator of insulin resistance. However, the association between TyG and regression from prediabetes to normoglycemia remains to be elucidated. METHODS: This retrospective cohort study involved 25,248 subjects with prediabetes at baseline conducted from 2010 to 2016. A Cox proportional hazard regression model was designed to evaluate the role of TyG in identifying people at converting from prediabetes to normoglycemia. Cox proportional hazards regression with cubic spline functions and smooth curve fitting was used to dig out the nonlinear relationship between them. Detailed evaluations for TyG were also performed using sensitivity and subgroup analyse. RESULTS: Among the included prediabetes subjects (n = 25,248), the mean age was 49.27 ± 13.84 years old, and 16,701 (66.15%) were male. The mean TyG was 8.83 ± 0.60. The median follow-up time was 2.96 ± 0.90 years. 11,499 (45.54%) individuals had a final diagnosis of normoglycemia. After adjusting for covariates, TyG was negatively affecting the results of glucose status conversion in prediabetes people (HR 0.895, 95% CI 0.863, 0.928). There was a nonlinear connection between TyG and normoglycemia in prediabetes people, and the inflection point was 8.88. The effect sizes (HR) on the left and right sides of the inflection point were 0.99 (0.93, 1.05) and 0.79 (0.74, 0.85), respectively. Sensitivity analysis confirmed the robustness of these results. Subgroup analysis showed that TyG was more strongly associated with incident glucose status conversion in male, BMI ≥ 25. In contrast, there was a weaker relationship in those with female, BMI < 25. CONCLUSION: Based on sample of subjects evaluated between 2010 and 2016, TyG index appears to be a promising marker for predicting normoglycemic conversion among prediabetes people in China. This study demonstrates a negative and non-linear association between TyG and glucose status conversion from prediabetes to normoglycemia. TyG is strongly related to glucose status conversion when TyG is above 8.88. From a therapeutic point of view, it is meaningful to maintain TyG levels within the inflection point to 8.88.


Assuntos
Glicemia , Estado Pré-Diabético , Triglicerídeos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , População do Leste Asiático , Glucose/análise , Estudos Longitudinais , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Estudos Retrospectivos , Triglicerídeos/sangue , Glicemia/análise , Resistência à Insulina
5.
J Zhejiang Univ Sci B ; 24(4): 301-311, 2023 Apr 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37056206

RESUMO

Postmenopausal osteoporosis is a kind of degenerative disease, also described as "invisible killer." Estrogen is generally considered as the key hormone for women to maintain bone mineral content during their lives. Iron accumulation refers to a state of human serum ferritin that is higher than the normal value but less than 1000 µg/L. It has been found that iron accumulation and osteoporosis could occur simultaneously with the decrease in estrogen level after menopause. In recent years, many studies indicated that iron accumulation plays a vital role in postmenopausal osteoporosis, and a significant correlation has been found between iron accumulation and fragility fractures. In this review, we summarize and analyze the relevant literature including randomized controlled trials, systematic reviews, and meta-analyses between January 1996 and July 2022. We investigate the mechanism of the effect of iron accumulation on bone metabolism and discuss the relationship of iron accumulation, osteoporosis, and postmenopausal fragility fractures, as well as the main clinical treatment strategies. We conclude that it is necessary to pay attention to the phenomenon of iron accumulation in postmenopausal women with osteoporosis and explore the in-depth mechanism of abnormal bone metabolism caused by iron accumulation, in order to facilitate the discovery of effective therapeutic targets for postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Fraturas por Osteoporose , Humanos , Feminino , Osteoporose Pós-Menopausa/complicações , Osteoporose Pós-Menopausa/tratamento farmacológico , Pós-Menopausa , Densidade Óssea , Estrogênios , Ferro/farmacologia , Ferro/uso terapêutico
6.
J Hazard Mater ; 443(Pt B): 130377, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444068

RESUMO

Heavy metal pollution in the mining areas leads to serious environmental problems. The biological sulfidogenic process (BSP) mediated by sulfidogenic bacteria has been considered an attractive technology for the treatment and remediation of metal-contaminated water and groundwater. Notwithstanding, BSP driven by different sulfidogenic bacteria could affect the efficiency and cost-effectiveness of the treatment performance in practical applications, such as the microbial intolerance of pH and metal ions, the formation of toxic byproducts, and the consumption of organic electron donors. Sulfur-reducing bacteria (S0RB)-driven BSP has been demonstrated to be a promising alternative to the commonly used sulfate-reducing bacteria (SRB)-driven BSP for treating metal-contaminated wastewater and groundwater, due to the cost-saving in chemical addition, the high efficiency in sulfide production and metal removal efficiency. Although the S0RB-driven BSP has been developed and applied for decades, the present review works mainly focus on the developments in SRB-driven BSP for the treatment and remediation of metal-contaminated wastewater and groundwater. Accordingly, a comprehensive review for metal-contaminated wastewater treatment and groundwater remediation should be provided with the incorporation of the SRB- and S0RB-driven BSP. To identify the bottlenecks and to improve BSP performance, this paper reviews sulfidogenic bacteria presenting in metal-contaminated water and groundwater; highlight the critical factors for the metabolism of sulfidogenic bacteria during BSP; the ecological roles of sulfidogenic bacteria and the mechanisms of metal removal by sulfidogenic bacteria; and the application of the present sulfidogenic systems and their drawbacks. Accordingly, the research knowledge gaps, current process limitations, and future prospects were provided for improving the performance of BSP in the treatment and remediation of metal-contaminated wastewater and groundwater in mining areas.


Assuntos
Desulfovibrio , Água Subterrânea , Águas Residuárias , Poluição da Água , Metais , Água
7.
Chemosphere ; 305: 135417, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35750228

RESUMO

Chlorine disinfection is widely applied in drinking water treatment plant to inactivate pathogens in drinking water, but it unintentionally reacts with organic matter present in source waters and generates halogenated disinfection byproducts (DBPs). Sugar is one of the most commonly used seasoning in our diet. The addition of sugar could significantly improve the taste of the beverages; however, the effects of sugar on DBP formation and transformation remain unknown. In this study, the effects of sugar type and dose on the halogenated DBP formation in chlorinated boiled real tap water were evaluated during making hot beverages. We found that sugar can react with chlorine residual in tap water and generate halogenated DBPs. As the most commonly used table sugar, the addition of sucrose in the water sample at 100 or 500 mg/L as C could increase the level of total organic halogen (TOX) by ∼35%, when compared with the boiled tap water sample without sugar addition. In addition, fifteen reported and new polar brominated and chlorinated DBPs were detected and proposed from the reaction between chlorine and sucrose; accordingly, the corresponding transformation pathways were also proposed. Moreover, the DBP formation in the chlorinated boiled real tap water samples with the addition of xylose, glucose, sucrose, maltose and lactose were also investigated. By comparing with the TOX levels in the water samples with different sugar addition and their calculated TOX risk indexes, it was suggested that applying xylose as a sweetener in beverages could not only obtain a relatively high sweetness but also minimize the adverse effect inducing by halogenated DBPs during making hot beverages.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Halogênios , Sacarose , Açúcares , Poluentes Químicos da Água/análise , Xilose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA