Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Sci Food Agric ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568724

RESUMO

BACKGROUND: Myoglobin (Mb) in duck meat is commonly over-oxidized when heated at high temperatures, which may worsen the color of the meat. Enhancing the oxidative stability of Mb is essential for improving the color of duck meat. Capsaicin and dihydrocapsaicin (CA-DI) in chili exhibit antioxidant properties. This study investigated the effects of CA-DI on the structure and oxidative damage of Mb by fluorescence spectroscopy, differential scanning calorimetry analysis and particle size in duck meat during heat treatment. RESULTS: When the ratio of CA-DI to Mb was 10:1 g kg-1 and heat-treated for 36 min, oxymyoglobin significantly increased, and metmyoglobin significantly decreased compared with the control group (P < 0.05). In parallel, the carbonyl content of Mb in the CA-DI group decreased by 43.40 ± 0.10%, the sulfhydryl content increased by 188 ± 0.21%, and the free radical scavenging activity of Mb was significantly enhanced (P < 0.05). Moreover, the addition of CA-DI resulted in a significant decrease in the particle size of the Mb surface (P < 0.05). When the ratio of CA-DI to Mb was 10:1 g kg-1, CA-DI enhanced the thermal stability and significantly increased the thermal denaturation temperature of Mb. The molecular docking results indicated that hydrophobic interactions and hydrogen bonds were involved in the binding of CA-DI to Mb. CONCLUSION: CA-DI could combine with Mb and improve the oxidation stability of Mb in duck meat. This suggested that CA-DI could be a potential natural antioxidant that improves the color of meat products. © 2024 Society of Chemical Industry.

2.
Environ Res ; 252(Pt 1): 118827, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580006

RESUMO

BACKGROUND: PM2.5 is a harmful mixture of various chemical components that pose a challenge in determining their individual and combined health effects due to multicollinearity issues with traditional linear regression models. This study aimed to develop an analytical methodology combining traditional and novel machine learning models to evaluate PM2.5's combined effects on blood pressure (BP) and identify the most toxic components. METHODS: We measured late-pregnancy BP of 1138 women from the Heshan cohort while simultaneously analyzing 31 PM2.5 components. We utilized multiple linear regression modeling to establish the relationship between PM2.5 components and late-pregnancy BP and applied Random Forest (RF) and generalized Weighted Quantile Sum (gWQS) regression to identify the most toxic components contributing to elevated BP and to quantitatively evaluate the cumulative effect of the PM2.5 component mixtures. RESULTS: The results revealed that 16 PM2.5 components, such as EC, OC, Ti, Fe, Mn, Cu, Cd, Mg, K, Pb, Se, Na+, K+, Cl-, NO3-, and F-, contributed to elevated systolic blood pressure (SBP), while 26 components, including two carbon components (EC, OC), fourteen metallics (Ti, Fe, Mn, Cr, Mo, Co, Cu, Zn, Cd, Na, Mg, Al, K, Pb), one metalloid (Se), and nine water-soluble ions (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO42-, F-), contributed to elevated diastolic blood pressure (DBP). Mn and Cr were the most toxic components for elevated SBP and DBP, respectively, as analyzed by RF and gWQS models and verified against each other. Exposure to PM2.5 component mixtures increased SBP by 1.04 mmHg (95% CI: 0.33-1.76) and DBP by 1.13 mmHg (95% CI: 0.47-1.78). CONCLUSIONS: Our study highlights the effectiveness of combining traditional and novel models as an analytical strategy to quantify the health effects of PM2.5 constituent mixtures.

3.
J Med Internet Res ; 26: e54706, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687566

RESUMO

BACKGROUND: There is a dearth of feasibility assessments regarding using large language models (LLMs) for responding to inquiries from autistic patients within a Chinese-language context. Despite Chinese being one of the most widely spoken languages globally, the predominant research focus on applying these models in the medical field has been on English-speaking populations. OBJECTIVE: This study aims to assess the effectiveness of LLM chatbots, specifically ChatGPT-4 (OpenAI) and ERNIE Bot (version 2.2.3; Baidu, Inc), one of the most advanced LLMs in China, in addressing inquiries from autistic individuals in a Chinese setting. METHODS: For this study, we gathered data from DXY-a widely acknowledged, web-based, medical consultation platform in China with a user base of over 100 million individuals. A total of 100 patient consultation samples were rigorously selected from January 2018 to August 2023, amounting to 239 questions extracted from publicly available autism-related documents on the platform. To maintain objectivity, both the original questions and responses were anonymized and randomized. An evaluation team of 3 chief physicians assessed the responses across 4 dimensions: relevance, accuracy, usefulness, and empathy. The team completed 717 evaluations. The team initially identified the best response and then used a Likert scale with 5 response categories to gauge the responses, each representing a distinct level of quality. Finally, we compared the responses collected from different sources. RESULTS: Among the 717 evaluations conducted, 46.86% (95% CI 43.21%-50.51%) of assessors displayed varying preferences for responses from physicians, with 34.87% (95% CI 31.38%-38.36%) of assessors favoring ChatGPT and 18.27% (95% CI 15.44%-21.10%) of assessors favoring ERNIE Bot. The average relevance scores for physicians, ChatGPT, and ERNIE Bot were 3.75 (95% CI 3.69-3.82), 3.69 (95% CI 3.63-3.74), and 3.41 (95% CI 3.35-3.46), respectively. Physicians (3.66, 95% CI 3.60-3.73) and ChatGPT (3.73, 95% CI 3.69-3.77) demonstrated higher accuracy ratings compared to ERNIE Bot (3.52, 95% CI 3.47-3.57). In terms of usefulness scores, physicians (3.54, 95% CI 3.47-3.62) received higher ratings than ChatGPT (3.40, 95% CI 3.34-3.47) and ERNIE Bot (3.05, 95% CI 2.99-3.12). Finally, concerning the empathy dimension, ChatGPT (3.64, 95% CI 3.57-3.71) outperformed physicians (3.13, 95% CI 3.04-3.21) and ERNIE Bot (3.11, 95% CI 3.04-3.18). CONCLUSIONS: In this cross-sectional study, physicians' responses exhibited superiority in the present Chinese-language context. Nonetheless, LLMs can provide valuable medical guidance to autistic patients and may even surpass physicians in demonstrating empathy. However, it is crucial to acknowledge that further optimization and research are imperative prerequisites before the effective integration of LLMs in clinical settings across diverse linguistic environments can be realized. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300074655; https://www.chictr.org.cn/bin/project/edit?pid=199432.


Assuntos
Transtorno Autístico , Humanos , Transtorno Autístico/psicologia , Estudos Transversais , China , Idioma , Internet , Médicos/estatística & dados numéricos , Médicos/psicologia , Masculino , Feminino , Relações Médico-Paciente , População do Leste Asiático
4.
Appl Opt ; 63(7): 1854-1866, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437290

RESUMO

As a typical form of optical fringes with a quadratic phase, Newton's ring patterns play an important role in spherical measurements and optical interferometry. A variety of methods have been used to analyze Newton's ring patterns. However, it is still rather challenging to fulfill the analysis. We present a deep-learning-based method to estimate the parameters of Newton's ring patterns and fulfill the analysis accordingly. The experimental results indicate the excellent accuracy, noise robustness, and demodulation efficiency of our method. It provides another applicable approach to analyzing Newton's ring patterns and brings insights into fringe analysis and interferometry-based measurements.

5.
ACS Appl Mater Interfaces ; 16(14): 17401-17410, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537112

RESUMO

The low ionic conductivity of LiCoO2 limits the rate performance of the overall electrode. Here, a polymeric composite binder composed of poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) is reported to efficiently improve the ion transport in the LiCoO2 electrode. This is where the lithium-ion transport channel constructed by oxygen atoms of PEO can afford the electrode a lithium-ion transport number (tLi+) as high as 0.70 with the optimized composite binder in a mass ratio of 1:1 (O5F5), significantly higher than that of traditional PVDF (0.44). As a result, the O5F5 binder endows the LiCoO2 electrode with an impressive capacity of 90 mAh g-1 even at 15 C, which is twice as high as the PVDF electrode. In addition, the initial Coulombic efficiency of the LiCoO2 electrode with the O5F5 binder is close to 100% and the capacity retention is 91% after 100 cycles at 1 C. This study overcomes the problem of slow ion conductivity of the LiCoO2 electrode, providing an easy method for developing high-rate cathode binders.

6.
Burns Trauma ; 12: tkad050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312740

RESUMO

Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.

7.
Aging Dis ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38377027

RESUMO

Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.

8.
Int J Biol Macromol ; 258(Pt 2): 128965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151087

RESUMO

Tobacco mosaic virus (TMV) is the most widely spread and harmful virus in the world, causing serious economic losses annually. However, the low anti-erosion ability of the pesticides for TMV management make it easy to be washed by the rain, which makes the effective duration of the pesticides shorter. In this paper, a new bio-based nanogel with superior antiviral activity was reported, and its slow-release behavior, rain erosion resistance and the antiviral mechanism was systematically studied. The results determined that the nanogels (Zn2+@ALGNP and Zn2+@ALGNP@PL) exhibited sustained releasing of Zn2+ with a 7 days duration, and the ε-PL coating could enhance the releasing rate of Zn2+. Moreover, Zn2+@ALGNP@PL displayed a lower contact angle, indicating greater adhesion to the leaf surface, and in consequence imposed better resistance to simulate rain erosion than pure Zn2+. Strikingly, Zn2+@ALGNP@PL could inhibit plant virus infection by aggregating the virions and reducing its coat protein stability, as well as inducing the efficient expression of reactive oxygen species, antioxidant enzymes and resistance genes to enhance plant resistance and promote plant growth. Overall, this study had successfully developed a high rain-erosion resistant bio-based nanogel capable of continue to induce resistant plants and promote plant growth.


Assuntos
Praguicidas , Polietilenoglicóis , Polietilenoimina , Vírus do Mosaico do Tabaco , Nanogéis , Nicotiana , Doenças das Plantas , Antivirais/farmacologia , Praguicidas/farmacologia
9.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005357

RESUMO

Dalbergia odorifera T. Chen is traditionally referred to as "Dalbergiae Odoriferae Lignum" in traditional Chinese medicine. Its quality is typically assessed subjectively based on colour and texture observations and lacks a universal grading system. Our objective was to establish a relationship between heartwood colour and the content of key constituents, including total flavonoids, six specific flavonoids, alcohol-soluble extracts, and volatile oils, to assess their impact on heartwood quality. Substantial correlations were observed between the colour depth (L*), red-green direction (a*), and yellow-blue direction (b*), as well as the content of the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. Specifically, a* was correlated with the extract, total flavonoids, and isoliquiritigenin, whereas b* was correlated with the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. The results suggested that L*, b*, and chemical composition indices, such as extract, volatile oil, total flavonoids, and naringenin, could serve as primary criteria for classifying the quality of medicinal materials. This is consistent with market classification based on colour and texture, which facilitates material identification and guides the cultivation, harvesting, and processing of D. odorifera. This study provides a scientific foundation for its future development and use.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Óleos Voláteis , Cor , Flavonoides/química , Dalbergia/química
10.
Foods ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835186

RESUMO

Spice and its extracts have gained widespread utilization as natural and eco-friendly additives, imparting enhancements in flavor, color, and antioxidative attributes to meat-based products. This work aims to study the effect mechanism of capsaicin (CA) and dihydrocapsaicin (DI) in capsicum (chili pepper) on the structure and function of myofibrillar proteins (MPs) in duck meat during thermal treatment. The results showed that at a CA-DI to MP ratio of 1:500 (g/g) following a 12 min heat treatment, the carbonyl content of MPs in duck meat decreased by 48.30%, and the sulfhydryl content increased by 53.42%. When the concentration was 1:500 (CA-DI, g/g) after 24 min of heat treatment, the •OH and DPPH radical scavenging rates were highest at 59.5% and 94.0%, respectively. And the initial denaturation temperature of MPs was the highest at 96.62 °C, and the thermal absorption was lowest at 200.24 J g-1. At the parameter, the smallest particle size and size distribution range of MP were 190 nm (9.51%). Furthermore, the interplay between CA-DI and MPs contributed to a reduction in the protein particle size and intrinsic fluorescence. In summary, the combination of CA-DI and MPs played a crucial role in inducing protein unfolding and disintegration.

11.
Biochem Pharmacol ; 215: 115736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549795

RESUMO

In the past, neuropeptide substance P (SP) was predominantly recognized as a neuroinflammatory factor, while its potent healing activity was overlooked. This paper aims to review the regulatory characteristics of neuropeptide SP in both normal and diabetic wound healing. SP actively in the regulation of wound healing-related cells directly and indirectly, exhibiting robust inflammatory properties, promoting cell proliferation and migration and restoring the activity and paracrine ability of skin cells under diabetic conditions. Furthermore, SP not only regulates healing-related cells but also orchestrates the immune environment, thereby presenting unique and promising application prospects in wound intervention. As new SP-based preparations are being explored, SP-related drugs are poised to become an effective therapeutic intervention for diabetic foot ulcers (DFU).


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Substância P/farmacologia , Substância P/uso terapêutico , Cicatrização , Pele , Proliferação de Células
12.
Int Immunopharmacol ; 123: 110779, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582313

RESUMO

Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Membrana Celular/metabolismo , Movimento Celular , Mecanotransdução Celular/fisiologia , Transdução de Sinais , Humanos
13.
Chem Biol Interact ; 383: 110676, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586544

RESUMO

Solanesol is a tetra sesquiterpene enol with various biological activities. Modern medical studies have confirmed that solanesol has the function of lipid antioxidation and scavenges free radicals. This study aimed to investigate the protective effect of solanesol against oxidative damage induced by high glucose on human normal hepatocytes (L-02 cells) and its possible mechanism. The results showed that solanesol could effectively improve the decrease of cell viability induced by high glucose, decrease the contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in the extracellular medium, increased the enzyme activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), balanced the level of reactive oxygen species (ROS) in cells, inhibited lipid peroxidation of all kinds of biological membranes, and restored mitochondrial membrane potential (MMP). In addition, Solanesol also inhibited the expression of Keap1, promoted the nuclear translocation of Nrf2 by hydrogen bonding with Nrf2, and activated the expression of downstream antioxidant factors NQO1 and HO-1. Altogether, these findings suggest that solanesol may be a potential protectant against diabetic liver injury.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatócitos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
14.
Nanomaterials (Basel) ; 13(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37368292

RESUMO

GeSe monolayer (ML) has recently attracted much interest due to its unique structure and excellent physical properties that can be effectively tuned through single doping of various elements. However, the co-doping effects on GeSe ML are rarely studied. In this study, the structures and physical properties of Mn-X (X = F, Cl, Br, I) co-doped GeSe MLs are investigated by using first-principle calculations. The formation energy and phonon disspersion analyses reveal the stability of Mn-Cl and Mn-Br co-doped GeSe MLs and instability of Mn-F and Mn-I co-doped GeSe MLs. The stable Mn-X (X = Cl, Br) co-doped GeSe MLs exhibit complex bonding structures with respect to Mn-doped GeSe ML. More importantly, Mn-Cl and Mn-Br co-doping can not only tune magnetic properties, but also change the electronic properties of GeSe MLs, which makes Mn-X co-doped GeSe MLs indirect band semiconductors with anisotropic large carrier mobility and asymmetric spin-dependent band structures. Furthermore, Mn-X (X = Cl, Br) co-doped GeSe MLs show weakened in-plane optical absorption and reflection in the visible band. Our results may be useful for electronic, spintronic and optical applications based on Mn-X co-doped GeSe MLs.

15.
Front Psychol ; 14: 1116321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089728

RESUMO

"Preparedness for teaching" refers to the degree of confidence preservice teachers have, and reflects their ability. Developing preparedness for teaching is an important part of preservice teachers' professionalization. A substantial body of literature has documented the critical influence of the motivation to teach on preparedness; however, how this relation is impacted by mediating and moderating mechanisms remains unclear. To respond to this gap in knowledge, the present study constructed a mediated moderation model through structural equation modeling and multigroup tests using 383 questionnaires completed by preservice teachers in China. The findings indicate that the preservice teachers' genders, entry path, and levels of certainty about their future teaching career choices all influence their preparedness for teaching. Specifically, preservice teachers who believe that they will choose a teaching career in the future have more intrinsic motivation, stronger constructivist teaching beliefs, and a higher levels of teaching preparedness. Moreover, preservice teachers' motivations to teach can positively predict their constructivist teaching beliefs and preparedness for teaching, but their constructivist teaching beliefs alone do not have a mediating effect on the relationship between motivation to teach and preparedness for teaching. However, the findings reveal that the constructivist teaching beliefs of highly conscientiousness group can partially mediate the relationship between the motivation to teach and the preparedness for teaching. Additionally, conscientiousness moderates the influence of constructivist teaching beliefs on preparedness for teaching. The study provides meaningful insights into the within-personal traits of how and when motivation to teach affects preparedness for teaching, which may be useful for the motivation best practices for preservice teacher recruitment, training, and support to create high-quality teachers.

16.
Nanomicro Lett ; 15(1): 107, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071270

RESUMO

The solvation structure of Li+ in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency (ICE) and poor cycle performance of silicon-based materials. Nevertheless, the chemical prelithiation agent is difficult to dope active Li+ in silicon-based anodes because of their low working voltage and sluggish Li+ diffusion rate. By selecting the lithium-arene complex reagent with 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized SiO/C anode can achieve an ICE of nearly 100%. Interestingly, the best prelithium efficiency does not correspond to the lowest redox half-potential (E1/2), and the prelithiation efficiency is determined by the specific influencing factors (E1/2, Li+ concentration, desolvation energy, and ion diffusion path). In addition, molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li+. Furthermore, the positive effect of prelithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film characterizations.

17.
Sci Total Environ ; 875: 162659, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894098

RESUMO

Trade plays an important role in driving regional production and the associated pollutant emissions. Revealing the patterns and underlying driving forces of trade may be critical for informing future mitigation actions among regions and sectors. In this study, we focused on the "Clean Air Action" period from 2012 to 2017 and revealed the changes and driving forces in trade-related air pollutant emissions (including sulfur dioxide (SO2), particulate matter with a diameter equal to or less than 2.5 µm (PM2.5), nitrogen oxides (NOx), volatile organic compound (VOC), and carbon dioxide (CO2)) among regions and sectors in China. Our results showed that emissions embodied in domestic trade decreased considerably in absolute volume nationwide (23-61 %, except for VOC and CO2), but the relative contribution ratios from consumption in central and southwestern China increased (from 13 to 23 % to 15-25 % for various species), and those for eastern China decreased (from 39 to 45 % to 33-41 % for various species). From the sector perspective, trade-driven emissions from the power sector decreased in relative contribution ratios, while those from other sectors (including chemical, metal, nonmetal and services) were outstanding for specific regions, and became new targeted sectors when seeking mitigation through domestic supply chains. For changes in trade-related emissions, reduction in emission factor dominated the decreasing trends for almost all regions (27-64 % for the national total, except for VOC and CO2), and optimization in trade and/or energy structures also played marked reduction roles in specific regions, far offsetting the increasing effect of increasing trade volume (26-32 %, except for VOC and CO2). Our study provides a comprehensive picture of how trade-associated pollutant emissions changed during the "Clean Air Action" period, which may facilitate the formulation of more effective trade-associated policies to mitigate future emissions.

18.
Autoimmunity ; 56(1): 2189140, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36942486

RESUMO

The factors regulating the heterogeneity of interleukin-17A (IL-17A)-expressing CD4+ T cells in inflammatory bowel diseases remain unclear. In the current study, we characterised the expression and function of zinc finger protein 189 (ZFP189) in a murine colitis model. Mice were given dextran sulphate sodium to induce acute colitis. Flow cytometry was applied to recognise and enrich Th17 and Th17.1 cells based on the expression of IL-17A, interferon-γ (IFN-γ), C-X-C motif chemokine receptor 3 (CXCR3), and C-C motif chemokine receptor 4 (CCR4). The expression of ZFP189 in Th17 and Th17.1 cells was determined by Immunoblotting. Lentivirus-mediated ZFP189 knockdown was conducted to evaluate the effect of ZFP189 on the differentiation of Th17 and Th17.1 cells. The adoptive transfer was performed to analyse the pathogenicity of Th17.1 cells in vivo. We found that ZFP189 was mildly up-regulated in IL-17A-expressing CD4+ T cells in colonic lamina propria. Lamina propria Th17.1 cells expressed higher ZFP189 than Th17 cells. In vitro ZFP189 knockdown in CD4+ T cells did not impact Th17 cell differentiation but suppressed Th17.1 cell differentiation, as evidenced by lower T-box expressed in T cells (T-bet) and IFN-γ. When adoptively transferred into mice, ZFP189-deficient Th17.1 cells produced fewer IFN-γ, tumour necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) than ZFP189-expressing Th17.1 cells. Moreover, ZFP189-deficient Th17.1 cells induced less severe colitis than ZFP189-expressing Th17.1 cells, as evidenced by less body weight loss, a lower disease activity index, and a lower colon histological score. In summary, ZFP189 acts as a positive regulator of the differentiation and pathogenicity of lamina propria Th17.1 cells in colitis.


Assuntos
Colite , Células Th17 , Camundongos , Animais , Células Th17/metabolismo , Interleucina-17/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Diferenciação Celular , Mucosa Intestinal/patologia , Interferon gama , Receptores de Quimiocinas/metabolismo , Dedos de Zinco
19.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838641

RESUMO

One of the challenges in developing practical CO2 photoconversion catalysts is the design of materials with a low cost, high activity and good stability. In this paper, excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxide materials, which are cost-effective, long-lasting, and easy to fabricate, are evaluated. The characteristics of the nanohybrid catalysts depend greatly on their architecture and design. Thus, we focus on outstanding materials that offer effective and practical solutions. Strategies to improve CO2 conversion efficiency are summarized, including heterojunction, ion doping, defects, sensitization and morphology control, which can inspire the future improvement in photochemistry. The capacity of CO2 adsorption is also pivotal, which varies with the morphological and electronic structures. Forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional- and three-dimensional-ordered macroporous, respectively) are involved. Particularly, the several advantages of the 3DOM material make it an excellent candidate material for CO2 conversion. Hence, we explain its preparation method. Based on the discussion, new insights and prospects for designing high-efficient metallic oxide photocatalysts to reduce CO2 emissions are presented.


Assuntos
Dióxido de Carbono , Eletrônica , Adsorção , Óxidos , Fotoquímica
20.
ACS Appl Mater Interfaces ; 15(8): 10726-10734, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787129

RESUMO

Polymer binders play an important role in enhancing the electrochemical performance of silicon-based anodes to alleviate the volume expansion for lithium-ion batteries. It is difficult for common one-dimensional (1D) linear binders to limit the volume expansion of a silicon-based electrode when combined with silicon-based particles with scant binding points. Therefore, it is necessary to design a three-dimensional (3D) network structure, which has multiple binding points with the silicon particles to dissipate the mechanical stress in the continuous charge and discharge circulation. Here, a covalent and hydrogen bond synergist 3D network green binder (poly(acrylic acid) (PAA)-dextrin 9 (Dex9)) was prepared by the simple in situ thermal condensation of a one-dimensional liner binder PAA and Dex in the electrode fabrication process. The optimized SiOx@PAA-Dex9 electrode exhibits an initial Coulombic efficiency (ICE) of 82.4% at a current density of 0.2 A g-1. At a high current density of 1 A g-1, it retains a capacity of 607 mAh g-1 after 300 cycles, which is approximately twice as high as that of the SiOx@PAA electrode. Furthermore, the results of in situ electrochemical dilatometry (ECD) and characterization of electrode structures demonstrate that the PAA-Dex9 binder can effectively buffer the huge volume change and maintain the integrity of the SiOx electrodes. The research overcomes the low electrochemical stability difficulty of the 3D binder and sheds light on developing the simple fabrication procedure of an electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA