Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 827750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774408

RESUMO

Fusobacterium necrophorum can cause liver abscess, foot rot in ruminants, and Lemire syndrome in humans, Also, its virulence factors can induce the apoptosis of macrophages and neutrophils. However, the detailed mechanism has not been fully clarified. This study investigated the mechanisms of apoptosis and inflammatory factor production in F. necrophorum-induced neutrophils and macrophages (RAW246.7). After infection of macrophages with F. necrophorum, 5-ethynyl-2'-deoxyuridine labeling assays indicated that F. necrophorum inhibited macrophage proliferation in a time- and dose-dependent manner. Hoechst staining and DNA ladder assays showed significant condensation of the nucleus and fragmentation of genomic DNA in F. necrophorum-infected macrophages, Annexin V (FITC) and propidium iodide (PI) assay confirmed the emergence of apoptosis in the macrophages and sheep neutrophils with F. necrophorum compared with the control. The group with significant apoptosis was subjected to RNA sequencing (RNA-Seq), and the sequencing results revealed 2581 up- and 2907 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed genes showed that F. necrophorum drove apoptosis and production of inflammatory factors by activating genes related to the Nuclear Factor-κB (NF-κB) and death receptor pathways. Meanwhile, quantitative reverse transcription PCR and Western blot validation results were consistent with the results of transcriptome sequencing analysis. In conclusion, F. necrophorum induced apoptosis and production of pro-inflammatory factors through the NF-κB and death receptor signaling pathway, providing a theoretical basis for further mechanistic studies on the prevention and control of F. necrophorum disease treatment.


Assuntos
Infecções por Fusobacterium , Fusobacterium necrophorum , Animais , Apoptose , Citocinas , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/veterinária , Fusobacterium necrophorum/genética , NF-kappa B , Receptores de Morte Celular , Ovinos , Transdução de Sinais
2.
Vet Immunol Immunopathol ; 188: 59-64, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615128

RESUMO

During the periparturient period, many neuroendocrine changes develop in cows. Periparturient hormone fluxes may adversely affect mammary gland immunity and mastitis susceptibility. 17ß-Estradiol (E2) and progesterone (P4) have been reported to function on immune regulation, and their concentration fluctuates dramatically during the perinatal period. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) mediate numerous aspects of innate immunity in humans and experimental animals. This study aimed to explore the effects of E2 and P4 on NOD2 expression in bovine mammary epithelial cells (BMECs). BMECs were isolated and purified from bovine mammary tissue and treated with E2/P4 and muramyl dipeptide (MDP). After these treatments, the mRNA levels of NOD2, receptor-interacting protein kinase (RIP) 2, interleukin (IL) 1ß, IL-6, IL-8 and tumor necrosis factor (TNF) α were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) respectively, and the protein levels of NOD2 were analyzed by western blotting. The results showed that E2 and P4 decreased MDP-induced transcriptional expression of NOD2 and the downstream molecules. Moreover, E2 reduced MDP-induced NOD2 protein expression levels. Our study suggests that down-regulation of NOD2 by E2 and P4 may be one of the reasons for mastitis susceptibility in periparturient dairy cows.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/farmacologia , Estradiol/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Progesterona/farmacologia , Animais , Western Blotting/veterinária , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA