Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Coll Physicians Surg Pak ; 34(1): 115-117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38185974

RESUMO

This study aimed to investigate the diagnostic value of combined echocardiography and residual cholesterol in asymptomatic myocardial ischaemia. One hundred and fifty-seven patients were seen at Hefei BOE Hospital from 2019 to 2022. The patients were divided into two groups, the observation group (n=90, confirmed asymptomatic myocardial ischaemia) and the control group (n=67, negative diagnosis), based on coronary angiography. The observation group had significantly higher residual cholesterol levels (p=0.001). A combined approach of echocardiography and serum residual cholesterol values showed statistically higher accuracy (p<0.05), with ROC curve analysis supporting the superiority of this method [AUC 0.788 (0.711-0.865), Yoden index 0.576]. It also demonstrated higher sensitivity (88.9%) and specificity (68.7%). The study concluded that combined echocardiography and serum residual cholesterol testing offer superior diagnostic efficacy and practicality for asymptomatic myocardial ischaemia, recommending it for the clinical use. Key Words: Echocardiography, Residual cholesterol, Asymptomatic myocardial ischaemia, Diagnosis.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária , Colesterol , Ecocardiografia , Hospitais
4.
Hepatobiliary Pancreat Dis Int ; 21(4): 325-333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34674948

RESUMO

BACKGROUND: Macrovascular invasion (MaVI) occurs in nearly half of hepatocellular carcinoma (HCC) patients at diagnosis or during follow-up, which causes severe disease deterioration, and limits the possibility of surgical approaches. This study aimed to investigate whether computed tomography (CT)-based radiomics analysis could help predict development of MaVI in HCC. METHODS: A cohort of 226 patients diagnosed with HCC was enrolled from 5 hospitals with complete MaVI and prognosis follow-ups. CT-based radiomics signature was built via multi-strategy machine learning methods. Afterwards, MaVI-related clinical factors and radiomics signature were integrated to construct the final prediction model (CRIM, clinical-radiomics integrated model) via random forest modeling. Cox-regression analysis was used to select independent risk factors to predict the time of MaVI development. Kaplan-Meier analysis was conducted to stratify patients according to the time of MaVI development, progression-free survival (PFS), and overall survival (OS) based on the selected risk factors. RESULTS: The radiomics signature showed significant improvement for MaVI prediction compared with conventional clinical/radiological predictors (P < 0.001). CRIM could predict MaVI with satisfactory areas under the curve (AUC) of 0.986 and 0.979 in the training (n = 154) and external validation (n = 72) datasets, respectively. CRIM presented with excellent generalization with AUC of 0.956, 1.000, and 1.000 in each external cohort that accepted disparate CT scanning protocol/manufactory. Peel9_fos_InterquartileRange [hazard ratio (HR) = 1.98; P < 0.001] was selected as the independent risk factor. The cox-regression model successfully stratified patients into the high-risk and low-risk groups regarding the time of MaVI development (P < 0.001), PFS (P < 0.001) and OS (P = 0.002). CONCLUSIONS: The CT-based quantitative radiomics analysis could enable high accuracy prediction of subsequent MaVI development in HCC with prognostic implications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
J Neuroinflammation ; 18(1): 153, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229722

RESUMO

BACKGROUND: Neuroinflammation is a major driver of age-related brain degeneration and concomitant functional impairment. In patients with Alzheimer's disease, the most common form of age-related dementia, factors that enhance neuroinflammation may exacerbate disease progression, in part by impairing the glymphatic system responsible for clearance of pathogenic beta-amyloid. Inflammatory bowel diseases (IBDs) induce neuroinflammation and exacerbate cognitive impairment in the elderly. The NACHT-LRR and pyrin (PYD) domain-containing protein 3 (NLRP3) inflammasome has been implicated in neuroinflammation. Therefore, we examined if the NLRP3 inflammasome contributes to glymphatic dysfunction and cognitive impairment in an aging mouse model of IBD. METHODS: Sixteen-month-old C57BL/6J and NLRP3 knockout (KO) mice received 1% wt/vol dextran sodium sulfate (DSS) in drinking water to model IBD. Colitis induction was confirmed by histopathology. Exploratory behavior was examined in the open field, associative memory by the novel-object recognition and Morris water maze tests, glymphatic clearance by in vivo two-photon imaging, and neuroinflammation by immunofluorescence and western blotting detection of inflammatory markers. RESULTS: Administration of DSS induced colitis, impaired spatial and recognition memory, activated microglia, and increased A1-like astrocyte numbers. In addition, DSS treatment impaired glymphatic clearance, aggravated amyloid plaque accumulation, and induced neuronal loss in the cortex and hippocampus. These neurodegenerative responses were associated with increased NLRP3 inflammasome expression and accumulation of gut-derived T lymphocytes along meningeal lymphatic vessels. Conversely, NLRP3 depletion protected against cognitive dysfunction, neuroinflammation, and neurological damage induced by DSS. CONCLUSIONS: Colitis can exacerbate age-related neuropathology, while suppression of NLRP3 inflammasome activity may protect against these deleterious effects of colitis.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Colite/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Fatores Etários , Animais , Encéfalo/patologia , Doença Crônica , Disfunção Cognitiva/patologia , Colite/patologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência
6.
Mol Brain ; 13(1): 135, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028376

RESUMO

BACKGROUND: Cerebral microinfarcts (MIs) lead to progressive cognitive impairments in the elderly, and there is currently no effective preventative strategy due to uncertainty about the underlying pathogenic mechanisms. One possibility is the dysfunction of GABAergic transmission and ensuing excitotoxicity. Dysfunction of GABAergic transmission induces excitotoxicity, which contributes to stroke pathology, but the mechanism has kept unknown. The secreted leucine-rich repeat (LRR) family protein slit homologue 2 (Slit2) upregulates GABAergic activity and protects against global cerebral ischemia, but the neuroprotective efficacy of Slit2 against MIs has not been examined. METHODS: Middle-aged Wild type (WT) and Slit2-Tg mice were divided into sham and MI treatment groups. MIs were induced in parietal cortex by laser-evoked arteriole occlusion. Spatial memory was then compared between sham and MI groups using the Morris water maze (MWM) task. In addition, neuronal activity, blood brain barrier (BBB) permeability, and glymphatic clearance in peri-infarct areas were compared using two-photon imaging, while GABAergic transmission, microglial activation, neuronal loss, and altered cortical connectivity were compared by immunofluorescent staining or western blotting. RESULTS: Microinfarcts increased the amplitude and frequency of spontaneous intracellular Ca2+ signals, reduced neuronal survival and connectivity within parietal cortex, decreased the number of GABAergic interneurons and expression of vesicular GABA transporter (VGAT), induced neuroinflammation, and impaired both glymphatic clearance and spatial memory. Alternatively, Slit2 overexpression attenuated dysfunctional neuronal Ca2+ signaling, protected against neuronal death in the peri-infarct area as well as loss of parietal cortex connectivity, increased GABAergic interneuron number and VGAT expression, attenuated neuroinflammation, and improved both glymphatic clearance and spatial memory. CONCLUSION: Our results strongly suggest that overexpression of Slit2 protected against the dysfunction in MIs, which is a potential therapeutic target for cognition impairment in the elderly.


Assuntos
Infarto Encefálico/metabolismo , Infarto Encefálico/fisiopatologia , Cognição , Sistema Glinfático/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Astrócitos/metabolismo , Axônios/patologia , Barreira Hematoencefálica/patologia , Infarto Encefálico/complicações , Contagem de Células , Neurônios GABAérgicos/metabolismo , Sistema Glinfático/fisiopatologia , Humanos , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neuroproteção , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
7.
Cell Death Dis ; 11(10): 849, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051464

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is marked by progressive cognitive decline, deposition of misfolded amyloid-ß (Aß) peptide and formation of neurofibrillary tangles. Recently, microglial training has emerged as an important contributor to neurological diseases, which augments the subsequent inflammation. However, how it affects the pathology of AD remains unknown. Here, using a mouse model of sporadic Alzheimer's disease (SAD) induced by streptozotocin injection, we demonstrated that microglial training exacerbated Aß accumulation, neuronal loss, and cognitive impairment. In addition, we injected MCC950 to inhibit NLRP3 activation and used an inducible Cre recombinase to delete the NLRP3 gene in microglia. Inhibition or depletion of microglial NLRP3 could protect against the pathologies of SAD and abolish the effects of microglial training. Our results identified microglial training as an important modifier of neuropathology in SAD and demonstrated that activation of NLRP3 inflammasome contributed to the pathologies and microglial training in SAD. Therefore, NLRP3 could be a potential therapeutic target for SAD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/patologia , Animais , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Camundongos , Microglia/patologia , Distribuição Aleatória
8.
Clin Hemorheol Microcirc ; 76(3): 381-390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32675401

RESUMO

OBJECTIVES: To compare the diagnostic efficacy of shear wave elastography (SWE) comnined with ACR TI-RADS categories for malignancy risk stratification of thyroid nodules with interminate FNA cytology. METHODS: The clinical data, sonographic features, ACR TI-RADS grading and shear wave elastography images of 193 patients of surgical pathologically proven thyroid nodules with interminate FNA cytology were retrospectively analyzed. The diagnostic efficacy of ACR TI-RADS categories, the maximum Young's modulus (Emax) of SWE and the combination of the two were calculated respectively. RESULTS: The ROC curves were drawn using surgical pathology results as the gold standard. The ROC curves indicated that the cut-off value of ACR TI-RADS and Emax of SWE was TR5 and 41.2 kPa respectively, and the area under the ROC curve (AUC) was 0.864 (95% CI: 0.879-0.934) and 0.858 (95% CI: 0.796-0.920) respectively. The diagnostic sensitivity, specificity and accuracy of ACR TI-RADS was 81.4% (127/156), 84.8% (31/37), and 81.9% (158/193), respectively. That of SWE Emax was 80.8% (126/156), 78.4% (29/37), and 80.3% (155/193), respectively. After SWE combined with ACR TI-RADS, the sensitivity, specificity and accuracy was 94.2% (147/156), 75.7% (28/37), and 90.7% (175/193), respectively. CONCLUSIONS: ACR TI-RADS classification system and shear wave elastography had high diagnostic efficacy for thyroid nodules with interminate FNA cytology. The combination of the two could improve diagnostic sensitivity and accuracy, and could help to differentiate benign and malignant thyroid nodules with interminate FNA cytology.


Assuntos
Biópsia por Agulha Fina/métodos , Técnicas de Imagem por Elasticidade/métodos , Nódulo da Glândula Tireoide/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Adulto Jovem
9.
J Cereb Blood Flow Metab ; 40(5): 1048-1060, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31216943

RESUMO

Using a photothrombotic mouse model of single stroke, we show that a single stroke onset increases the nuclear factor-κB (NF-κB), NLR family CARD domain containing protein 4 (NLRC4), and absent in melanoma 2 (AIM2) inflammasomes, as well as the mRNA levels of NLRP3. Next, using a photothrombotic mouse model of recurrent stroke, we found that recurrent strokes increased the activation of NLRP3, exacerbated the brain damage and the pro-inflammatory response in wild type (WT) mice, but not in NLRP3 knockout (NLRP3 KO) mice. Additionally, we found that apoptosis-associated speck-like protein containing a CARD (ASC) protein level surrounding the infarct area was comparatively increased, but that ASC specks outside of microglia in both the ipsilateral and contralateral of stroke site were decreased in NLRP3 KO mice relative to wild-type (WT) controls, and the number of ASC specks surrounding the second infarct area was positively correlated to the damage scores. Mechanistically, we found that recombinant ASC (RecASC) activated NLRP3 and induced pro-inflammatory responses, exacerbating the outcome of ischemic stroke, in WT mice, but not in NLRP3 KO mice. We therefore conclude that the NLRP3 inflammasome is activated by two attacks of stroke, which act together with ASC to exacerbate recurrent strokes.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Inflamassomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Recidiva , Acidente Vascular Cerebral/imunologia
10.
Brain Res ; 1726: 146488, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586625

RESUMO

Acute ischemic stroke is a leading cause of disability with limited therapeutic options. Continuous theta burst stimulation (cTBS) has recently been shown to be a promising noninvasive therapeutic strategy for neuroprotection in ischemic stroke patients. Here, we investigated the protective effects of cTBS following acute infarction using a photothrombotic stroke (PTS) model in the right posterior parietal cortex (PPC) of C57BL/6 mice. Treatment with cTBS resulted in a reduction in the volume of the infarct region and significantly increased vascular diameter and blood flow velocity in peri-infarct region, as well as decreased the numbers of calcium binding adapter molecule 1 (Iba-1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes. Moreover, the number of CD16/32 positive microglia was decreased, whereas the number of CD206 positive microglia was increased. In addition, performance in a water maze task was significantly improved. These results indicated that cTBS protected against PPC infarct region, leading to an improvement in spatial cognitive function, possibly as a result of changes to cerebral microvascular function and inflammatory responses.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Encefalite/prevenção & controle , AVC Isquêmico/prevenção & controle , Neuroproteção , Animais , Capilares/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Encefalite/complicações , AVC Isquêmico/complicações , AVC Isquêmico/psicologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Memória Espacial , Vasodilatação
11.
Neurosci Lett ; 715: 134611, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31698026

RESUMO

Continuous theta burst stimulation (cTBS) has been widely recognized as a therapeutic treatment for ischemic stroke, but the underlying mechanism is still elusive. Here, we investigated the protective effects of cTBS in the posterior parietal cortex during the chronic phase of stroke in the photothrombotic ischemic model. Infarction volume and neuron excitability in the peri-infarct area were assessed using immunohistochemistry and whole-cell patch-clamp. Spatial cognitive function was measured using the Morris water maze. Gamma-Amino butyric acid (GABA) interneurons were responsive to cTBS, and cTBS induced elevated phasic inhibition rather than tonic inhibition. Given that GABA-A-mediated phasic inhibition was elevated during the chronic phase of ischemic stroke for 30 days and was beneficial for stroke recovery, we investigated the therapeutic potential of cTBS in promoting functional recovery and found that the elevated phasic inhibition by cTBS improved spatial cognitive function in the photothrombotic stroke mouse model with induction in the posterior parietal cortex. Our study indicates the mechanism by which cTBS may modify the excitability of the brain cortex and provides novel insight into the potential of cTBS to protect against neuronal dysfunction in ischemic stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Terapia por Estimulação Elétrica/métodos , Neurônios GABAérgicos/fisiologia , Ritmo Teta/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fatores de Tempo
12.
Front Cell Neurosci ; 12: 177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997480

RESUMO

While increasing evidence demonstrated that voluntary wheel running promotes cognitive function, little is known on how different types of voluntary wheel running affect cognitive function in elderly populations. We investigated the effects of various voluntary wheel-running types on adult hippocampal neurogenesis and spatial cognition in middle-aged mice. Male C57BL6 and Thy1-green fluorescent protein (GFP) transgenic mice (13 months) were equally assigned to one of the following groups: (1) T1: no voluntary wheel running; (2) T2: intermittent voluntary wheel running; and (3) T3: continuous voluntary wheel running. The Thy1-GFP transgenic mice were used to specifically label granule cells, since Thy-1 is a promoter for neuronal expression. Behavioral evaluations suggested that intermittent voluntary wheel running improved Morris water maze performance in middle-aged mice. The number of BrdU-positive cells was significantly higher in both intermittent and continuous voluntary wheel running compared with no voluntary wheel running. However, only intermittent voluntary wheel running facilitated the newborn cells to differentiate into granule cells, while newborn cells tended to differentiate into astrocytes and repopulation of microglia was also enhanced in the continuous voluntary wheel-running group. These results indicated that intermittent voluntary exercise may be more beneficial for enhancing spatial memory. Effective improvement of hippocampal neurogenesis was also caused by intermittent voluntary wheel running in middle-aged mice.

13.
Neurosci Lett ; 674: 11-17, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501684

RESUMO

Traumatic brain injury (TBI) is to date one of the major critical conditions causing death and disability worldwide. Exogenous neural stem/precursor cells (NSCs/NPCs) hold great promise for improving neurological dysfunction, but their functional properties in vivo remain unknown. Human neural precursor cells (hNPCs) carrying one fluorescent reporter gene (DsRed) can be observed directly in vivo using two-photon laser-scanning microscope. Therefore, we evaluated the neural integration and potential therapeutic effect of hNPCs on mice with TBI. Behavioral tests were performed by rotarod task and Morris Water Maze task. Neural integration was detected by fluorometric Ca2+ imaging and nerve tracing. We found that motor and cognition functions were significantly improved in mice with hNPCs injection compared to mice with vehicle treatment, and hNPCs integrated into the host circuit and differentiated toward neuronal lineage. Our study provided reliable evidence for further hNPCs transplantation in clinical practice.


Assuntos
Lesões Encefálicas Traumáticas/cirurgia , Células-Tronco Embrionárias/transplante , Neurônios/fisiologia , Animais , Comportamento Animal , Lesões Encefálicas Traumáticas/psicologia , Diferenciação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/fisiologia , Humanos , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Teste de Desempenho do Rota-Rod
14.
Front Mol Neurosci ; 10: 144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28579942

RESUMO

Age is characterized by chronic inflammation, leading to synaptic dysfunction and dementia because the clearance of protein waste is reduced. The clearance of proteins depends partly on the permeation of the blood-brain barrier (BBB) or on the exchange of water and soluble contents between the cerebrospinal fluid (CSF) and the interstitial fluid (ISF). A wealth of evidence indicates that physical exercise improves memory and cognition in neurodegenerative diseases during aging, such as Alzheimer's disease (AD), but the influence of physical training on glymphatic clearance, BBB permeability and neuroinflammation remains unclear. In this study, glymphatic clearance and BBB permeability were evaluated in aged mice using in vivo two-photon imaging. The mice performed voluntary wheel running exercise and their water-maze cognition was assessed; the expression of the astrocytic water channel aquaporin 4 (AQP4), astrocyte and microglial activation, and the accumulation of amyloid beta (Aß) were evaluated with immunofluorescence or an enzyme-linked immunosorbent assay (ELISA); synaptic function was investigated with Thy1-green fluorescent protein (GFP) transgenic mice and immunofluorescent staining. Voluntary wheel running significantly improved water-maze cognition in the aged mice, accelerated the efficiency of glymphatic clearance, but which did not affect BBB permeability. The numbers of activated astrocytes and microglia decreased, AQP4 expression increased, and the distribution of astrocytic AQP4 was rearranged. Aß accumulation decreased, whereas dendrites, dendritic spines and postsynaptic density protein (PSD95) increased. Our study suggests that voluntary wheel running accelerated glymphatic clearance but not BBB permeation, improved astrocytic AQP4 expression and polarization, attenuated the accumulation of amyloid plaques and neuroinflammation, and ultimately protected mice against synaptic dysfunction and a decline in spatial cognition. These data suggest possible mechanisms for exercise-induced neuroprotection in the aging brain.

15.
Neurosci Lett ; 653: 189-194, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28576566

RESUMO

Sleep deprivation (SD) is a common condition associated with a variety of nervous system diseases, and has a negative impact on emotional and cognitive function. Continuous theta burst stimulation (cTBS) is known to improve cognition and emotion function in normal situations as well as in various types of dysfunction, but the mechanism remains unknown. We used two-photon in vivo imaging to explore the effect of cTBS on glymphatic pathway clearance in normal and SD C57BL/6J mice. Aquaporin-4 (AQP4) polarization was detected by immunofluorescence. Anxiety-like behaviors was measured using open field tests. We found that SD reduced influx efficiency along the peri-vascular space (PVS), disturbed AQP4 polarization and induced anxiety-like behaviors. CTBS significantly attenuated the decrease in efficiency of solute clearance usually incurred with SD, restored the loss of AQP4 polarization and improved anxiety-like behavior in SD animals. Our results implied that cTBS had the potential to protect against neuronal dysfunction induced by sleep disorders.


Assuntos
Encéfalo/metabolismo , Taxa de Depuração Metabólica , Privação do Sono/metabolismo , Animais , Ansiedade , Aquaporina 4/metabolismo , Encéfalo/fisiopatologia , Estimulação Elétrica , Masculino , Camundongos Endogâmicos C57BL , Privação do Sono/líquido cefalorraquidiano
16.
Neurosci Lett ; 631: 85-90, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27521753

RESUMO

Traumatic brain injury (TBI) is the leading cause of mortality and disability among male adolescents and young adults; and mild traumatic brain injury is the most common type of traumatic brain injury. The disruption of blood-brain barrier (BBB) plays an important role in brain trauma. Previously, we have found that slit2, a member of slit protein family, increases permeability of BBB. In the present study, we examined the role of slit2 in the pathogenesis of mild TBI in a mouse model of micro TBI. Rhodamine BandPI (PropidiumIodide) staining were used to detect the permeability of BBB and cell death, respectively. The leakage of Rhodamine B and cell death were significantly increased in Slit2-Tg mice than in C57 control mice after micro TBI. The present results suggest that over expression of slit2 plays a detrimental role in the pathophysiology of mild TBI.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
J Neurochem ; 138(3): 436-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167158

RESUMO

Cerebral microbleeds are strongly linked to cognitive dysfunction in the elderly. Iron accumulation plays an important role in the pathogenesis of intracranial hemorrhage. Deferoxamine (DFX), a metal chelator, removes iron overload and protects against brain damage in intracranial hemorrhage. In this study, the protective effects of DFX against microhemorrhage were examined in mice. C57BL6 and Thy-1 green fluorescent protein transgenic mice were subjected to perforating artery microhemorrhages on the right posterior parietal cortex using two-photon laser irradiation. DFX (100 mg/kg) was administered 6 h after microhemorrhage induction, followed by every 12 h for three consecutive days. The water maze task was conducted 7 days after induction of microhemorrhages, followed by measurement of blood-brain barrier permeability, iron deposition, microglial activation, and dendritic damage. Laser-induced multiple microbleeds in the right parietal cortex clearly led to spatial memory disruption, iron deposits, microglial activation, and dendritic damage, which were significantly attenuated by DFX, supporting the targeting of iron overload as a therapeutic option and the significant potential of DFX in microhemorrhage treatment. Irons accumulation after intracranial hemorrhage induced a serious secondary damage to the brain. We proposed that irons accumulation after parietal microhemorrhages impaired spatial cognition. After parietal multiple microhemorrhages, increased irons and ferritin contents induced blood-brain barrier disruption, microglial activation, and further induced dendrites loss, eventually impaired the water maze, deferoxamine treatment protected from these damages.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Desferroxamina/farmacologia , Dendritos/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/patologia , Dendritos/metabolismo , Modelos Animais de Doenças , Ferro/metabolismo , Sobrecarga de Ferro , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sideróforos/farmacologia
18.
Front Hum Neurosci ; 10: 38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869911

RESUMO

Lesion and neuroimaging studies have suggested that regions in the posterior parietal cortex (PPC) are involved in visual spatial attention. The aim of this study was to investigate the potential effects on spatial attention resulting from a transient parietal impairment induced by 1-Hz repetitive transcranial magnetic stimulation (rTMS). We examined 50 healthy subjects using the attention network test (ANT) after first applying rTMS to right or left PPC. The right parietal rTMS, but not left PPC rTMS, caused a significant slowing in the mean reaction time (RT) to target presentation following a spatial cue during the ANT test. There were no significant effects of rTMS on mean RT under the no-cue, center-cue, and double-cue conditions, or for each flanker type among the experimental groups. Moreover, after rTMS to the right PPC, test subjects displayed deficits in networks related to alerting and orienting, whereas they exhibited improvement following rTMS to the left PPC. These findings indicate that the right PPC serves an important function in spatial orienting and the alerting activities. We interpreted the enhancement in alerting and spatial orienting function following low-frequency rTMS of left PPC as reflecting a disinhibition of right PPC via an inter-hemispheric inhibition account.

19.
Physiol Behav ; 151: 502-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318391

RESUMO

In the current study we investigated the role of the corpus callosum, particularly the gamma-aminobutyric acid-ergic (GABAergic) projection neurons involved in interhemispheric inhibition (IHI). In order to explore IHI in primary visual cortices, we adopted a protocol whereby we performed a direct current lesion of the unilateral primary visual cortex with or without posterior callosotomy, and used two-photon Ca(2+)in vivo imaging on the opposite unaffected region to detect neural activities in mice. Following this procedure, the numbers of vesicular GABAergic transporters (VGATs) and GABAergic interneurons in the unaffected primary cortex were determined using immunofluorescence staining. Results indicated that following unilateral visual cortical lesioning without callosotomy, the neuronal Ca(2+) activities in the opposite side were significantly increased. However, the neuronal activities of the unaffected visual cortex in animals with unilateral cortical lesion with callosotomy were not significantly different. Additionally, there was no significant difference in the numbers of GABAergic interneurons in the unaffected region between each group, while the number of VGATs in the unaffected region was significantly decreased following unilateral visual cortical lesion without callosotomy, which was unchanged once with callosotomy. Finally, callosotomy alone without cortical lesioning produced no change in neuronal activities, the number of GABAergic interneurons or VGATs. Our results demonstrate that IHI between the homologous primary visual cortices occurs via the corpus callosum, and further indicate the important involvement of long-range GABAergic interneurons in transcallosal inhibition.


Assuntos
Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Córtex Visual/fisiologia , Animais , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Corpo Caloso/fisiopatologia , Imunofluorescência , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Córtex Visual/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem , Ácido gama-Aminobutírico/metabolismo
20.
Brain Res ; 1622: 361-7, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26187758

RESUMO

Microinfarcts are common in patients with cognitive decline and dementia. Allopurinol (ALLO), a xanthine oxidase (XO) enzyme inhibitor, has been found to reduce proinflammatory molecules and oxidative stress in the vasculature. We here examined the effect of pre-treatment with allopurinol on the cortical microinfarction. C57BL/6J mice were subjected to a permanent single penetrating arteriole occlusion induced by two-photon laser irradiation. Infarction volume, the activation of glial cells and nitrosative stress in the ischemic brain was assessed using immunohistochemistry. Pre-treatment with ALLO achieved 42% reduction of infarct volume and significantly reduced microglia infiltration, astrocyte proliferation and nitrosative stress in the ischemic brain. These data indicate that ALLO protects against microinfarcts possibly through inhibition of nitrosative stress and attenuation of microglia infiltration as well as astrocytes reactivation.


Assuntos
Alopurinol/farmacologia , Encéfalo/efeitos dos fármacos , Infarto Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Arteríolas , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Infarto Cerebral/patologia , Infarto Cerebral/fisiopatologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Lasers , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Microglia/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA