Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 24(7): 1801-8, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24175507

RESUMO

Taking the typical karst peak-cluster depressions in Huanjiang County of northwest Guangxi as the objects, and by using the method of replacing time with space, an analysis was made on the dynamic changes of top soil (0-15 cm) nutrients and their dominant controlling factors during the process of vegetation succession. With the positive succession of vegetation (herb-shrub-secondary forest-primary forest), the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents increased significantly, with the soil SOC, TN, and TP increased from 29.1 g x kg(-1), 2.48 g x kg(-1), and 0.72 g x kg(-1) in herb community to 73.9 g x kg(-1), 8.10 g x kg(-1), and 1.6 g x kg(-1) in primary forest, respectively, which indicated that the positive succession of vegetation was helpful to the soil nutrient accumulation. The soil cation exchange capacity (CEC) had close relationships with the soil SOC and TN, being the primary controlling factor for the accumulation of the soil C and N. The litter P content, C/P ratio, and N/P ratio were the major factors controlling the P accumulation in the topsoil. The litters higher P content and N/P ratio and smaller C/P ratio were helpful for the P accumulation. Topographic indices (slope, aspect, and rock exposure ratio) had little effects on the soil nutrients.


Assuntos
Carbono/análise , Florestas , Poaceae/crescimento & desenvolvimento , Solo/química , Árvores/crescimento & desenvolvimento , China , Monitoramento Ambiental/métodos , Geologia/métodos , Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise
2.
J Am Chem Soc ; 131(17): 6056-7, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19400589

RESUMO

Thermodynamic stereocontrol of the (hexamethyldisilazide)magnesium enolates of propiophenone in THF is reported. The overall stereoselectivity proves to be very sensitive to concentration, since dimeric species with bridging enolates show no stereoselectivity while monomeric enolates show a very strong thermodynamic preference for the Z enolate. Kinetically, interconversion among aggregates is remarkably slow, whereas stereoisomerization of the monomer, even in the absence of a proton source such as ketone or amine, is remarkably fast. Furthermore, stereoisomerization takes place in the absence of a proton source or excess ketone. These observations contrast with accepted views of these fundamentally important processes and have implications for understanding the identity and reactivity of metal enolates.


Assuntos
Álcoois/química , Magnésio/química , Compostos Organometálicos/química , Termodinâmica , Furanos/química , Cinética , Conformação Molecular , Propiofenonas/química , Estereoisomerismo , Fatores de Tempo
3.
J Am Chem Soc ; 128(41): 13599-610, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17031975

RESUMO

Magnesium bis(hexamethyldisilazide), Mg(HMDS)(2), reacts with substoichiometric amounts of propiophenone in toluene solution at ambient temperature to form a 74:26 mixture of the enolates (E)- and (Z)-[(HMDS)(2)Mg(2)(mu-HMDS){mu-OC(Ph)=CHCH(3)}], (E)-1 and (Z)-1, which contain a pair of three-coordinate metal centers bridged by an amide and an enolate group. The compositions of (E)-1 and (Z)-1 were confirmed by solution NMR studies and also by crystallographic characterization in the solid state. Rate studies using UV-vis spectroscopy reveal the rapid and complete formation of a reaction intermediate, 2, between the ketone and magnesium, which undergoes first-order decay with rate constants independent of the concentration of excess Mg(HMDS)(2) (DeltaH++ = 17.2 +/- 0.8 kcal/mol, DeltaS++ = -11 +/- 3 cal/mol.K). The intermediate 2 has been characterized by low-temperature (1)H NMR, diffusion-ordered NMR, and IR spectroscopy and investigated by computational studies, all of which are consistent with the formulation of 2 as a three-coordinate monomer, (HMDS)(2)Mg{eta(1)-O=C(Ph)CH(2)CH(3)}. Further support for this structure is provided by the synthesis and structural characterization of two model ketone complexes, (HMDS)(2)Mg(eta(1)-O=C(t)Bu(2)) (3) and (HMDS)(2)Mg{eta(1)-O=C((t)Bu)Ph} (4). A large primary deuterium isotope effect (k(H)/k(D) = 18.9 at 295 K) indicates that proton transfer is the rate-limiting step of the reaction. The isotope effect displays a strong temperature dependence, indicative of tunneling. In combination, these data support the mechanism of enolization proceeding through the single intermediate 2 via intramolecular proton transfer from the alpha carbon of the bound ketone to the nitrogen of a bound hexamethyldisilazide.

4.
J Am Chem Soc ; 127(19): 6920-1, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15884913

RESUMO

The reactions of magnesium and calcium bis(hexamethyldisilazide) with propiophenone have been studied with a view to determine the utility of these bases in the stereoselective enolization of ketones and to uncover the nature of the metal enolate intermediates produced. Both base systems are highly Z-selective when the reactions are conducted in the presence of polar solvents. However, in situ monitoring of the magnesium system in arene solution revealed a preference for E-enolate formation, which was confirmed by silyl enol ether trapping studies. Solution NMR studies of the magnesium system in toluene-d8 show the presence of a monomer-dimer equilibrium for the intermediate amidomagnesium enolates. This assignment is supported by the characterization of a disolvated amidomagnesium enolate dimer by crystallographic analysis. Comparative studies of the calcium system show distinctly different behavior. This is exemplified by the characterization of a novel solvent-separated ion pair complex and a monomeric amidocalcium enolate in the solid state. Solution NMR studies of the calcium system in pyridine-d5 reveal the co-existence of the heteroleptic amidocalcium enolate, the bisamide, the bisenolate and the ion pair complex.

5.
J Am Chem Soc ; 126(24): 7444-5, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15198583

RESUMO

Potassium, calcium, and mixed potassium-calcium amide combinations have been shown to be efficient reagents in enolization reactions, and a set of representative intermediate mono- and heterobimetallic enolates have been successfully isolated and crystallographically characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA