Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 77(1): 74-82, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613377

RESUMO

OBJECTIVES: In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS: A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS: This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS: The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética
2.
Antimicrob Agents Chemother ; 65(10): e0105421, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339270

RESUMO

The global spread of antimicrobial-resistant bacteria has been one of the most severe threats to public health. The emergence of the mcr-1 gene has posed a considerable threat to antimicrobial medication since it deactivates one last-resort antibiotic, colistin. There have been reports regarding the mobilization of the mcr-1 gene facilitated by ISApl1-formed transposon Tn6330 and mediated rapid dispersion among Enterobacteriaceae species. Here, we developed a CRISPR/Cas9 system flanked by ISApl1 in a suicide plasmid capable of exerting sequence-specific curing against the mcr-1-bearing plasmid and killing the strain with chromosome-borne mcr-1. The constructed ISApl1-carried CRISPR/Cas9 system either restored sensitivity to colistin in strains with plasmid-borne mcr-1 or directly eradicated the bacteria harboring chromosome-borne mcr-1 by introducing an exogenous CRISPR/Cas9 targeting the mcr-1 gene. This method is highly efficient in removing the mcr-1 gene from Escherichia coli, thereby resensitizing these strains to colistin. The further results demonstrated that it conferred the recipient bacteria with immunity against the acquisition of the exogenous mcr-1 containing the plasmid. The data from the current study highlighted the potential of the transposon-associated CRISPR/Cas9 system to serve as a therapeutic approach to control the dissemination of mcr-1 resistance among clinical pathogens.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Sistemas CRISPR-Cas/genética , Cromossomos , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Plasmídeos/genética
3.
Microb Drug Resist ; 27(12): 1624-1632, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34077284

RESUMO

This study reported the involvement of a gene cluster from a conjugative plasmid in the biofilm formation of Escherichia coli. We used a novel EZ-Tn5 transposon technique to generate a transposon library and used arbitrarily primed PCR to detect the insertion sites in biofilm formation-deficient mutants. To validate the function of candidate biofilm formation genes, the genes were cloned into plasmid pBluescript II SK (+) and transformed into E. coil DH5α. Biofilm production from the transformants was then assessed by phenotypic biofilm formation using Crystal Violet staining and microscopy. A total of 3,000 transposon mutants of E. coli DH5α-p253 were screened, of which 28 were found to be deficient in biofilm formation. Further characterization revealed that 24/28 mutations were detected with their insertions in chromosome, while the remaining 4 mutations were evidenced that the functional genes for biofilm formation were harbored in the plasmid. Interestingly, the plasmid sequencing showed that these four transposon mutations were all inserted into a fimbriae-associated gene cluster (fim-cluster). This fim-cluster is a hybrid segment spanning a 7,949 bp sequence, with a terminal inverted repeat sequence and two coding regions. In summary, we performed a high-efficiency screening to a library constructed with the EZ-Tn5-based transposon approach and identified the gene clusters responsible for the biofilm production of E. coli, especially the genes harbored in the plasmid. Further studies are needed to understand the spread of this novel plasmid-mediated biofilm formation gene in clinical E. coli isolates and the clinical impacts.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/genética , Fímbrias Bacterianas/genética , Plasmídeos/genética , Escherichia coli/efeitos dos fármacos , Fímbrias Bacterianas/efeitos dos fármacos , Genes Bacterianos , Testes de Sensibilidade Microbiana , Fenótipo , Plasmídeos/efeitos dos fármacos
4.
Genome Med ; 12(1): 111, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287863

RESUMO

BACKGROUND: The recent emergence and dissemination of high-level mobile tigecycline resistance Tet(X) challenge the clinical effectiveness of tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant Gram-negative and Gram-positive pathogens. Although tet(X) has been found in various bacterial species, less is known about phylogeographic distribution and phenotypic variance of different genetic variants. METHODS: Herein, we conducted a multiregional whole-genome sequencing study of tet(X)-positive Acinetobacter isolates from human, animal, and their surrounding environmental sources in China. The molecular and enzymatic features of tet(X) variants were characterized by clonal expression, microbial degradation, reverse transcription, and gene transfer experiments, while the tet(X) genetic diversity and molecular evolution were explored by comparative genomic and Bayesian evolutionary analyses. RESULTS: We identified 193 tet(X)-positive isolates from 3846 samples, with the prevalence ranging from 2.3 to 25.3% in nine provinces in China. The tet(X) was broadly distributed in 12 Acinetobacter species, including six novel species firstly described here. Besides tet(X3) (n = 188) and tet(X4) (n = 5), two tet(X5) variants, tet(X5.2) (n = 36) and tet(X5.3) (n = 4), were also found together with tet(X3) or tet(X4) but without additive effects on tetracyclines. These tet(X)-positive Acinetobacter spp. isolates exhibited 100% resistance rates to tigecycline and tetracycline, as well as high minimum inhibitory concentrations to eravacycline (2-8 µg/mL) and omadacycline (8-16 µg/mL). Genetic analysis revealed that different tet(X) variants shared an analogous ISCR2-mediated transposon structure. The molecular evolutionary analysis indicated that Tet(X) variants likely shared the same common ancestor with the chromosomal monooxygenases that are found in environmental Flavobacteriaceae bacteria, but sequence divergence suggested separation ~ 9900 years ago (7887 BC), presumably associated with the mobilization of tet(X)-like genes through horizontal transfer. CONCLUSIONS: Four tet(X) variants were identified in this study, and they were widely distributed in multiple Acinetobacter spp. strains from various ecological niches across China. Our research also highlighted the crucial role of ISCR2 in mobilizing tet(X)-like genes between different Acinetobacter species and explored the evolutionary history of Tet(X)-like monooxygenases. Further studies are needed to evaluate the clinical impact of these mobile tigecycline resistance genes.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Genes Bacterianos/genética , Variação Genética , Tigeciclina/farmacologia , Acinetobacter/isolamento & purificação , Animais , Antibacterianos/farmacologia , Teorema de Bayes , China , Evolução Molecular , Flavobacteriaceae , Humanos , Testes de Sensibilidade Microbiana , Tetraciclinas , Sequenciamento Completo do Genoma
5.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32660996

RESUMO

The mobile colistin resistance gene mcr-3 has globally disseminated since it was first reported in 2017 in Escherichia coliIn vitro mobilization assays in this study demonstrate the functionality of the composite transposon structure ISKpn40-mcr-3.11-dgkA-ISKpn40 in wild-type and recA-E. coli strains. These transpositions generated 4-bp duplications at the target sites. This is the first report demonstrating the mobility of the mcr-3.11 gene by transposition.


Assuntos
Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Transferases (Outros Grupos de Fosfato Substituídos)
6.
Front Microbiol ; 11: 564973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510713

RESUMO

OBJECTIVES: The emergence of mobile colistin resistance genes has compromised the efficacy of the last resort antibiotic, colistin, in clinical treatment. The mcr-2 gene was first identified in Belgium in association with the insertion sequence ISEc69. However, the molecular mechanisms of mcr-2 mobilization are not well understood. METHODS: To further explore the mobilization of mcr-2 gene via ISEc69, we constructed a conjugative plasmid that carries an intact composite transposon Tn7052. Transposition assays were performed by conjugation, the transposition sites were characterized by arbitrary primed PCR and DNA sequencing. RESULTS: In this study, we experimentally demonstrated that mcr-2 could be mobilized as a composite transposon Tn7052 and its transposition generated 8-bp AT-rich duplications in the host genome. CONCLUSION: These results indicate that mcr-2 gene could be mobilized by ISEc69, the current investigations provide mechanistic insights in the transposition of mcr-2.

7.
Front Microbiol ; 10: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723461

RESUMO

Objectives: The mobile colistin resistance gene mcr-1 is a serious threat to global human and animal health. The composite transposon Tn6330 and its circular intermediate were proposed to be involved in the spread of mcr-1 but their roles remain poorly understood. Methods: To further explore the intermediates during the transposition of Tn6330, we engineered Escherichia coli strains that carry an intact Tn6330 transposon or its deletion derivatives. PCR assays were performed to detect IR-IR junctions and possible circular intermediates. We carried out transposition experiments to calculate transposition frequency. The transposition sites were characterized by whole genome sequence and ISMapper-based analyses. Results: The presence of an intact Tn6330 was demonstrated to be essential for the successful transposition of mcr-1, although both Tn6330 and Tn6330-ΔIR could form circular intermediates. The insertion sequence junction structure was observed in all constructed plasmids but the ISApl1 dimer was only formed in one construct containing an intact Tn6330. The average frequency of mcr-1 transposition in an E. coli strain possessing an intact Tn6330 was ∼10-6 per transformed cell. We identified 27 integration sites for the Tn6330 transposition event. All the transposition sites were flanked by 2 bp target duplications and preferentially occurred in AT-rich regions. Conclusion: These results indicate that mcr-1 transposition relies on the presence of an intact Tn6330. In addition, formation of the tandem repeat ISApl1 2 could represent a crucial intermediate. Taken together, the current investigations provide mechanistic insights in the transposition of mcr-1.

8.
Int J Antimicrob Agents ; 51(6): 842-847, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29371103

RESUMO

Two colistin-resistant Escherichia coli strains (FS13Z2S and FS3Z6C) possessing chromosomally encoded mcr-1 isolated from swine were characterised. Whole-genome sequencing revealed that in strain FS13Z2S mcr-1 occurred in triplicate in the chromosome with another copy encoded on a pHNSHP45-2-like IncHI2 plasmid, whereas in strain FS3Z6C only one copy mcr-1 was inserted in the chromosome. It seems likely that the triplication of chromosomal copies of mcr-1 in FS13Z2S is due to intramolecular transposition events via a composite transposon containing an mcr-1 cassette bracketed by two copies of insertion sequence ISApl1, and the pap2 gene at the insertion site was truncated by an IS1294-like element. In plasmid pFS13Z2S and the chromosome of strain FS3Z6C, only a single copy of ISApl1 was present upstream of the mcr-1 cassette. The two strains exhibited similar colistin minimum inhibitory concentrations (MICs) and featured phosphoethanolamine addition to lipid A, without regard to the copy number of mcr-1. The mcr-1-harbouring plasmid was unstable in wild-type strain FS13Z2S and was quickly lost after 7 days of passage on colistin-free Luria-Bertani broth containing 0.5% SDS, but the mcr-1 copies on the chromosome persisted. These results reveal that the single copy of mcr-1 could result in modification of lipopolysaccharide (LPS) and cause colistin resistance in E. coli. Acquisition of multiple copies of mcr-1, especially on the chromosome, would facilitate stable persistence of colistin resistance in the host strain.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Etanolaminas/química , Dosagem de Genes/genética , Humanos , Lipídeo A/química , Lipídeo A/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Análise de Sequência de DNA
9.
Artigo em Inglês | MEDLINE | ID: mdl-29038275

RESUMO

Antimicrobial resistance among uropathogens has increased the rates of infection-related morbidity and mortality. Antofloxacin is a novel fluoroquinolone with broad-spectrum antibacterial activity against urinary Gram-negative bacilli, such as Escherichia coli This study monitored the in vivo efficacy of antofloxacin using bioluminescent imaging and determined pharmacokinetic (PK)/pharmacodynamic (PD) targets against E. coli isolates in a neutropenic murine thigh infection model. The PK properties were determined after subcutaneous administration of antofloxacin at 2.5, 10, 40, and 160 mg/kg of body weight. Following thigh infection, the mice were treated with 2-fold-increasing doses of antofloxacin from 2.5 to 80 mg/kg administered every 12 h. Efficacy was assessed by quantitative determination of the bacterial burdens in thigh homogenates and was compared with the bioluminescent density. Antofloxacin demonstrated both static and killing endpoints in relation to the initial burden against all study strains. The PK/PD index area under the concentration-time curve (AUC)/MIC correlated well with efficacy (R2 = 0.92), and the dose-response relationship was relatively steep, as observed with escalating doses of antofloxacin. The mean free drug AUC/MIC targets necessary to produce net bacterial stasis and 1-log10 and 2-log10 kill for each isolate were 38.7, 66.1, and 147.0 h, respectively. In vivo bioluminescent imaging showed a rapid decrease in the bioluminescent density at free drug AUC/MIC exposures that exceeded the stasis targets. The integration of these PD targets combined with the results of PK studies with humans will be useful in setting optimal dosing regimens for the treatment of urinary tract infections due to E. coli.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Neutropenia/microbiologia , Ofloxacino/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Meia-Vida , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Ofloxacino/administração & dosagem , Ofloxacino/farmacocinética , Ofloxacino/farmacologia , Plasmídeos/genética , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/microbiologia , Coxa da Perna/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA