Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 258: 121802, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796914

RESUMO

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Assuntos
Água Subterrânea , Metano , Oryza , Oxirredução , Metano/metabolismo , Água Subterrânea/química , Água Subterrânea/microbiologia , Anaerobiose , Archaea/genética , Archaea/metabolismo
2.
Water Res ; 253: 121311, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367382

RESUMO

The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Purificação da Água , Animais , Selênio/metabolismo , Esgotos/microbiologia , Águas Residuárias , Ecossistema , Purificação da Água/métodos
3.
Chemosphere ; 350: 141038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147928

RESUMO

Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 µg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.


Assuntos
Mercúrio , Selênio , Mercúrio/metabolismo , Selênio/metabolismo , Esgotos , Águas Residuárias , Anaerobiose , Solo
4.
Environ Pollut ; 338: 122563, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717891

RESUMO

Extracellular superoxide radical (O2•-) is ubiquitous in microbial environments and has significant implications for pollutant transformation. Microbial extracellular O2•- can be produced through multiple pathways, including electron leakage from the respiratory electron transport chain (ETC), NADPH oxidation by the transmembrane NADPH oxidase (NOX), and extracellular reactions. Extracellular O2•- significantly influences the geochemical processes of various substances, including toxic metals and refractory organic pollutants. On one hand, extracellular O2•- can react with variable-valence metals and detoxify certain highly toxic metals, such as As(III), Cr(VI), and Hg(II). On the other hand, extracellular O2•- can directly or indirectly (via Bio-Fenton) degrade many organic pollutants, including a variety of emerging contaminants. In this work, we summarize the production mechanisms of microbial extracellular O2•-, review its roles in the transformation of environmental pollutants, and discuss the potential applications, limiting factors, and future research directions in this field.


Assuntos
Poluentes Ambientais , Superóxidos , NADPH Oxidases/metabolismo , Respiração Celular , Metais , Poluentes Ambientais/toxicidade , Oxirredução
5.
Environ Pollut ; 332: 121665, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080520

RESUMO

Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40-300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si-OH and Si-O-Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si-O-) at a high pH and they formed strong chemical bonds of Si-O-Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si-OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology.


Assuntos
Carbonato de Cálcio , Metais Pesados , Carbonato de Cálcio/química , Cimentação , Silicatos/química
6.
Chemosphere ; 329: 138623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030346

RESUMO

Iron oxides and sulfate are usually abundant in paddy soil, but their role in reducing methane emissions is little known. In this work, paddy soil was anaerobically cultivated with ferrihydrite and sulfate for 380 days. An activity assay, inhibition experiment, and microbial analysis were conducted to evaluate the microbial activity, possible pathways, and community structure, respectively. The results showed that anaerobic oxidation of methane (AOM) was active in the paddy soil. The AOM activity was much higher with ferrihydrite than sulfate, and an extra 10% of AOM activity was stimulated when ferrihydrite and sulfate coexisted. The microbial community was highly similar to the duplicates but totally different with different electron acceptors. The microbial abundance and diversity decreased due to the oligotrophic condition, but mcrA-carrying archaea increased 2-3 times after 380 days. Both the microbial community and the inhibition experiment implied that there was an intersection between iron and sulfur cycles. A "cryptic sulfur cycle" might link the two cycles, in which sulfate was quickly regenerated by iron oxides, and it might contribute 33% of AOM in the tested paddy soil. Complex links between methane, iron, and sulfur geochemical cycles occur in paddy soil, which may be significant in reducing methane emissions from rice fields.


Assuntos
Fertilizantes , Solo , Metano/metabolismo , Sulfatos/metabolismo , Anaerobiose , Archaea/metabolismo , Ferro/metabolismo , Oxirredução , Óxidos de Enxofre , Enxofre/metabolismo
7.
Sci Total Environ ; 871: 162148, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758696

RESUMO

Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Metais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos , Poluentes do Solo/análise
8.
Chemosphere ; 317: 137901, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669540

RESUMO

Iron-dependent anaerobic oxidation of methane (Fe-AOM) is an important process to reduce methane emissions into the atmosphere. It is well known that iron bioavailability largely influences microbial iron reduction, but the long-term effects of different ferric irons on soil Fe-AOM remain unknown. In this work, paddy soil in the ferruginous zone was collected and inoculated with insoluble ferrihydrite and soluble EDTA-Fe(III) for 420 days. Stable isotope experiments, activity inhibition tests, and molecular biological techniques were performed to reveal the activity, microbial community, and possible mechanism of paddy soil Fe-AOM. The results showed that ferrihydrite was a better electron acceptor for long-term Fe-AOM cultivation. Although EDTA-Fe(III) is highly bioavailable and could stimulate Fe-AOM activity for a short time, it restricted the activity increase in the long term. The abundances of archaea, iron-reducing bacteria (IRB), and gene mcrA largely increased after cultivation, indicating the important roles of mcrA-carrying archaea and IRB. Remarkably, archaeal communities were similar, but bacteria were totally different with different ferric irons. The results of the microbial community and activity inhibition suggested that Fe-AOM was performed likely by the cooperation between archaea (Methanomassiliicoccaceae or pGrfC26) and IRB in the cultures.


Assuntos
Compostos Férricos , Solo , Metano , Anaerobiose , Ácido Edético , Archaea/genética , Bactérias/genética , Oxirredução , Ferro
9.
Environ Res ; 220: 115172, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584849

RESUMO

In alkaline soil, abundant carbonates will mobilize uranium (U) and increase its ecotoxicity, which is a serious threat to crop growth. However, the knowledge of U remediation in alkaline soils remains very limited. In this study, U-contaminated alkaline soil (tillage layer) was collected from the Ili mining area of Xinjiang, the soil remediation was carried out by using phosphorus (P) fertilizers of different solubility (including KH2PO4, Ca(H2PO4)2, CaHPO4, and Ca3(PO4)2), and the pathways and mechanisms of U passivation in the alkaline soil were revealed. The results showed that water-soluble P fertilizers, KH2PO4 and Ca(H2PO4)2, were highly effective at immobilizing U, and significantly reduced the bioavailability of soil U. The exchangeable U was reduced by 70.5 ± 0.1% (KH2PO4) and 68.2 ± 1.9% (Ca(H2PO4)2), which was converted into the Fe-Mn oxide-bound and residual phases. Pot experiments showed that soil remediation by KH2PO4 significantly promoted crop growth, especially for roots, and reduced U uptake in crops by 94.5 ± 1.0%. The immobilization of U by KH2PO4 could be attributed to the release of phosphate anions, which react with the uranyl ion (UO22+) forming a stable mineral of meta-ankoleite and enhancing the binding of UO22+ to the soil Fe-Mn oxides. In addition, KH2PO4 dissolution produces acidity and P fertilizer, which can reduce soil alkalinity and improve crop growth. The findings in this work demonstrate that a rational application of P fertilizer can effectively, conveniently, and cheaply remediate U contamination and improve crop yield and safety on alkaline farmland.


Assuntos
Poluentes do Solo , Urânio , Fósforo , Fertilizantes/análise , Poluentes do Solo/análise , Solo
10.
Chemosphere ; 311(Pt 1): 136981, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283435

RESUMO

Tailings are one of the largest quantities of hazardous waste in the world, and their treatment is difficult and expensive. In this work, a new, low-cost technique coupling microbially induced carbonate precipitation (MICP) and inorganic additives was proposed, optimized, and applied. The results showed that CaO was the best additive among the six tested, with an optimum dosage of 5%. A 90-day experiment indicated that the MICP-CaO coupled technique was highly effective for all the concerned heavy metals (Cu, Ni, Pb, and Cr) in the Cu-Ni tailings. During the stabilization period (20-90 days), the passivation rates were stable at 78.8 ± 2.9% (Cu), 78.1 ± 1.0% (Ni), 89.2 ± 1.0% (Pb), and 97.8 ± 0.5% (Cr), 2%-866% higher than the single technique of either MICP or CaO. Multiple analyses demonstrated that the synergistic effect of MICP and CaO produced a large amount of calcite (1.5% of the tailings). This calcite cemented the tailings particles, sequestrated heavy metal ions into the lattices, and played a key role in heavy metal passivation. Moreover, CaO and MICP improved the strength and compactness of solidified body, respectively. This work demonstrates the feasibility of the MICP-CaO coupled technique in tailings solidification, which can be applied in practical projects.


Assuntos
Cobre , Metais Pesados , Níquel , Chumbo , Carbonatos , Carbonato de Cálcio , Precipitação Química
11.
Water Res ; 227: 119321, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368086

RESUMO

Due to the limitations of the conventional water sample pretreatment methods, some of the colloidal uranium (U) has long been misidentified as "dissolved" phase. In this work, the U species in river water in the Ili Basin was classified into submicron-colloidal (0.1-1 µm), nano-colloidal (0.1 µm-3 kDa) and dissolved phases (< 3 kDa) by using high-speed centrifugation and ultrafiltration. The U concentration in the river water was 5.39-8.75 µg/L, which was dominated by nano-colloidal phase (55-70%). The nano-colloidal particles were mainly composed of particulate organic matter (POM) and had a very high adsorption capacity for U (accounting for 70 ± 23% of colloidal U). Sediment disturbance, low temperature, and high inorganic carbon greatly improved the release of nano-colloidal U, but high levels of Ca2+ inhibited it. The simulated river experiments indicated that the flow regime determined the release of nano-colloidal U, and large amounts of nano-colloidal U might be released during spring floods in the Ili basin. Moreover, global warming increases river flow and inorganic carbon content, which may greatly promote the release and migration of nano-colloidal U.


Assuntos
Rios , Urânio , Urânio/análise , Coloides/análise , Carbono/análise , Água/análise
12.
Environ Pollut ; 314: 120277, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167164

RESUMO

Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.


Assuntos
Lactobacillales , Poluentes do Solo , Urânio , Urânio/análise , Fertilizantes/análise , Lactobacillales/metabolismo , Fosfatos/análise , Solo/química , Ácido Láctico , Oxigênio/análise , Poluentes do Solo/análise
13.
Sci Total Environ ; 838(Pt 4): 156504, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688247

RESUMO

Metal tailings contain a variety of toxic heavy metals and have potential environmental risks owing to long-term open piling. In the present study, a strain of ureolytic bacteria with bio-mineralization ability, Lysinibacillus fusiformis strain Lf, was isolated from copper-nickel mine tailings in Xinjiang and applied to a pilot trial of tailings solidification under field conditions. The results of the pilot trial (0.5 m3 in scale) showed that strain Lf effectively solidified the tailings. The compressive strength of the solidified tailings increased by 121 ± 9 % and the permeability coefficient decreased by 68 ± 3 %. Compared to the control, the leaching reduction of the solidified tailings of Cu and Ni was >98 %, and that of As was 92.5 ± 1.7 %. Two mechanisms of tailings solidification and heavy metal passivation were proposed based on the findings of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS) mapping. Biogenic calcite filled the interstices of the tailings particles and cemented the adjacent particles. This improved the mechanical properties and reduced permeability. Moreover, heavy metal colloids were incorporated into large-sized calcite crystals, and heavy metal ions were sequestered within the calcite lattice. This method of using indigenous ureolytic bacteria to solidify tailings was successful in this work and may be replicated to remediate other tailings.


Assuntos
Cobre , Metais Pesados , Bactérias , Carbonato de Cálcio , Metais Pesados/química , Níquel , Projetos Piloto
14.
J Hazard Mater ; 411: 125103, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858089

RESUMO

Soil structure is an important index to evaluate soil quality; however, previous researchers have only paid attention to the effect and economic benefits of soil heavy metal remediation. In this study, microbial-induced carbonate precipitation (MICP) technology was used to remediate soil Pb pollution, and its effect on soil structure was studied by sieving and X-ray computed tomography techniques. The results showed that the leaching amount of heavy metals in soil decreased by 76.34% after remediation. Interestingly, due to the addition of organic matter and microorganisms, the soil particle size changed from microaggregates to large aggregates, and the large soil particle size (diameter > 2 mm) increased significantly by 71.43%. The soil porosity increased by 73.78%, which enhanced the soil permeability and increased the soil hydraulic conductivity. Therefore, MICP bioremediation not only remediated soil heavy metal pollution but also promoted the soil aggregation structure, which has important significance for soil remediation and improvement.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Carbonatos , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise
15.
Environ Sci Pollut Res Int ; 28(5): 5372-5382, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32964386

RESUMO

Uranium (U) is a highly toxic radioactive element and limited to < 30 µg/L in drinking water by the World Health Organization. In this study, the concentration, distribution, possible source, and correlation with other elements of U were investigated in river sediments of the Ili River Basin. Metal contamination factors (CFs) and geoaccumulation index (Igeo) were calculated, and both of them indicated that U in the survey region was unpolluted, slightly polluted, or moderately polluted (its concentration was ranged from 1.37 to 5.99 mg/kg). Notably, U pollution in the tributaries near the Wusun Mountain was evidently higher than those in the main streams of the Ili River and the Tekes River. Principal component analysis (PCA), cluster analysis (CA), and correlation analysis revealed that U was significantly positively correlated with Pb, and both of them might have originated from the dense coal mines in the areas of the Wusun Mountain. Sediment U in the main streams of the rivers was unpolluted or slightly polluted, which might be strongly influenced by the U contamination in their upstream tributaries. The results from this work showed that the source control of the coal-derived U pollution near the Wusun Mountain was critical to protect the aquatic environment in the Ili River Basin.


Assuntos
Metais Pesados , Urânio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análise
16.
Chemosphere ; 260: 127621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688320

RESUMO

Biological technologies are efficient and economical methods for removing toxic arsenic (As) from organic wastewaters. In this study, four sequencing batch reactors of manganese-oxidizing aerobic granular sludge (Mn-AGS) were operated in duplicate and imposed with acidic pH and high organic shocks. Batch experiments with different initial conditions were conducted to investigate the effects of pH and organic load on As(III) oxidation and removal. The results indicate that acidic pH shocks (influent pH decreased to 4.0/3.0) unexpectedly increased the As removal efficiency from 23.4-38.2% to 64.7-72.5%. The effects of high organic shocks were very complicated, as the results of the shocks were opposite twice. According to the results of the batch experiments, it was estimated that the suitable pH range for high performance was 5.0-8.5 in reaction liquid. Although acidic pH shocks initially inhibited As(III) oxidation and removal, they largely extended the reaction time of the suitable pH range and finally improved the As removal efficiency. There were many negative and positive factors affecting the As removal during the high organic shocks, leading to the unstable responses. Moreover, the microbial community was not largely changed by pH or organic shocks, and genus Hydrogenophaga (∼8%) might be responsible for the microbial As(III) oxidation. Finally, several operation strategies were proposed to obtain high performance, such as liquid pH control and aeration improvement.


Assuntos
Reatores Biológicos , Manganês/análise , Eliminação de Resíduos Líquidos/métodos , Arsênio/análise , Trióxido de Arsênio , Concentração de Íons de Hidrogênio , Oxirredução , Esgotos , Águas Residuárias
17.
Sci Total Environ ; 735: 139533, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32473433

RESUMO

Wastewaters containing tetracycline (TC) are produced in many industries, and biotechnology is an economic way to treat it. In this work, aerobic granular sludge (AGS) modified with in-situ generated biogenic manganese oxides (BioMnOx), named after manganese-oxidizing AGS (Mn-AGS), was used to treat TC in wastewater. Comparisons between Mn-AGS and AGS indicated that Mn-AGS showed superior TC resistance and treatment results than AGS. The activity of Mn-AGS was not inhibited by TC content as high as 20 mg/L. Wastewater TC could be removed stably and efficiently (95.2 ± 0.8%) in the Mn-AGS reactors after 119 days' acclimation. Furthermore, TC may be first adsorbed on Mn-AGS sludge and then degraded by both microbial community and BioMnOx. TC adsorption could be greatly improved by increasing solution pH, which can be attributed to the increase in negatively charged TC species at high pHs. The microbial community changed greatly after TC exposure and some TC-resistant bacteria, such as Flavobacterium, were enriched in the final sludge. Moreover, the antibiotic resistance genes (ARGs) tetA, tetG, and tetX largely increased and the microorganisms were TC-resistant through efflux pumps and antibiotic inactivation mechanisms. This work suggests a new biological-chemical coupling strategy, Mn-AGS, to treat antibiotics in organic wastewater with high efficiency and stability.


Assuntos
Esgotos , Águas Residuárias , Antibacterianos , Reatores Biológicos , Manganês , Óxidos , Eliminação de Resíduos Líquidos
18.
Sci Total Environ ; 700: 134510, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629267

RESUMO

Manganese-oxidizing aerobic granular sludge (Mn-AGS) is a novel extension of AGS technology to treat arsenic (As) in organic wastewater. In this study, Mn-AGS was first applied to treat real wastewater (bottom ash leachates) containing high levels of As(III) and Cu(II) in a sequencing batch reactor (SBR) for 91 days. Influent and effluent As(III), As(V), Cu(II), as well as pH and chemical oxygen demand (COD) were monitored daily, and sludge was collected regularly for morphological observation, chemical characterization, and microbial analysis. The results indicated that As(III) and Cu(II) could be efficiently removed from wastewater (∼83% and ∼100%, respectively), but the performance was sensitive to pH variation, especially for As(III). The removed As and Cu were mostly bound to carbonates (60.2 ±â€¯2.0% and 70.0 ±â€¯0.6%, respectively) and Fe/Mn oxides (28.2 ±â€¯1.6% and 14.6 ±â€¯0.5%, respectively) in the final sludge. Influent As(III) was partially oxidized into As(V), and high fractions of As(V) were obtained in the Fe/Mn oxide-bound phase. Unexpectedly, microbial analysis revealed that community richness was only slightly changed when the influent was acidized (pH 4.0) but greatly reduced after the influent pH back to 6.0. It could be explained by that acid-fast bacteria rapidly grew after pH recovery and eliminated non-acid-fast bacteria. This work further supported the practical application of Mn-AGS to treat As(III)-containing organic wastewaters.


Assuntos
Arsênio/metabolismo , Cobre/metabolismo , Manganês/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Arsênio/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise
19.
Water Res ; 166: 115086, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536890

RESUMO

Methane fluxes from aqueous sediments strongly influence global atmospheric methane. However, many questions still puzzle researchers; for example, why are some unstable sediments atmospheric methane sinks? In this study, a biofilm model originally developed for wastewater treatment was modified to simulate the microbial kinetics and substance conversions in aqueous surface sediments. The model was validated by the experimental data and could predict chemical profiles and microbial distributions in sediments. The model revealed complicated interactions between different microbial communities and environmental factors, including competition between aerobic methane-oxidizing bacteria, nitrite-dependent anaerobic methane-oxidizing bacteria, and anaerobic ammonia-oxidizing bacteria. The results of model simulations showed that the effects of environmental factors, especially dissolved oxygen and ammonia in overlying water, on methane fluxes are very complicated. Rapid environmental changes (which can be caused by tide, day-night alternation, or zoobenthic and human activity) and intensive competition between microbes greatly affected methane fluxes and resulted in alternation between atmospheric methane source and sink in unstable sediments. This study extends the application of a wastewater treatment model to ecological studies of microbial interactions in natural sediments and explains some problems that might be difficult to resolve by using experimental methods.


Assuntos
Metano , Methylococcaceae , Anaerobiose , Sedimentos Geológicos , Nitritos , Oxirredução , Águas Residuárias
20.
Chemosphere ; 236: 124353, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31319307

RESUMO

As, Sb, and Cr are redox-sensitive and toxic heavy metal(loid)s, and redox reactions are usually involved in the treatment of substrates containing these elements. In this study, manganese-oxidizing aerobic granular sludge (Mn-AGS) was obtained by continuously adding Mn(II) to the sludge in a sequencing batch reactor (SBR). Morphological observations, and analyses of extracellular polymeric substances (EPS), Mn valence-states, and microbial communities were performed on the resulting sludge. After 50 days of cultivation, biogenic Mn(III,IV) oxides (bio-MnOx) accumulated up to approximately 25 mg Mn/g suspended solids (SS). X-ray photoelectron spectroscopy (XPS) revealed that the percentage of Mn(III,IV) was 87.6%. The protein (PN) component in EPS increased from 80.3 to 87.8 mg/g volatile suspended solids (VSS) during cultivation, which might be favorable for sludge granulation and heavy metal(loid) removal. Batch experiments showed that Mn-AGS was better at oxidizing As(III)/Sb(III) into less toxic As(V)/Sb(V) than traditional AGS. Remarkably, the results indicated that Mn-AGS did not oxidize Cr(III) but was able to reduce Cr(VI) into relatively harmless Cr(III). This work provided a new promising method with which to treat As(III), Sb(III), and Cr(VI) in wastewaters.


Assuntos
Antimônio/análise , Arsênio/análise , Cromo/análise , Manganês/química , Esgotos/química , Purificação da Água/métodos , Reatores Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA