Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613308

RESUMO

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

2.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338452

RESUMO

The efficient synthesis of nanosheets containing two metal ions is currently a formidable challenge. Here, we attempted to dope lanthanide-based bimetals into porphyrin-based metal-organic skeleton materials (MOFs) by microwave-assisted heating. The results of the EDX, ICP, and XPS tests show that we have successfully synthesized porphyrin-based lanthanide bimetallic nanosheets (Tb-Eu-TCPP) using a household microwave oven. In addition, it is tested and experimentally evident that these nanosheets have a thinner thickness, a larger BET surface area, and higher photogenerated carrier separation efficiency than bulk porphyrin-based bimetallic materials, thus exhibiting enhanced photocatalytic activity and n-type semiconductor properties. Furthermore, the prepared Tb-Eu-TCPP nanomaterials are more efficient in generating single-linear state oxygen under visible light irradiation compared to pristine monometallic nanosheets due to the generation of bimetallic nodes. The significant increase in catalytic activity is attributed to the improved separation and transfer efficiency of photogenerated carriers. This study not only deepens our understanding of lanthanide bimetallic nanosheet materials but also introduces an innovative approach to improve the photocatalytic performance of MOFs.

3.
Opt Lett ; 48(8): 2182-2185, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058672

RESUMO

The dispersion characteristics of a microresonator are important for applications in nonlinear optics, and precise measurement of the dispersion profile is crucial to device design and optimization. Here we demonstrate the dispersion measurement of high-quality-factor gallium nitride (GaN) microrings by a single-mode fiber ring, which is simple and convenient to access. Once the dispersion parameters of the fiber ring have been determined by the opto-electric modulation method, the dispersion can be obtained from the microresonator dispersion profile by polynomial fitting. To further verify the accuracy of the proposed method, the dispersion of the GaN microrings is also evaluated with frequency comb-based spectroscopy. Dispersion profiles obtained with both methods are in good agreement with simulations based on the finite element method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA