Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(20): e2211600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841244

RESUMO

Organic field-effect transistors (OFETs) based on 2D monolayer organic semiconductors (OSC) have demonstrated promising potentials for various applications, such as light emitting diode (LED) display drivers, logic circuits, and wearable electrocardiography (ECG) sensors. To date, the fabrications of this class of highly crystallized 2D organic semiconductors (OSC) are dominated by solution shearing. As these organic active layers are only a few molecular layers thick, their compatibilities with conventional thermal evaporated top electrodes or sophisticated photolithography patterning are very limited, which also restricts their device density. Here, an electrode transfer stamp and a semiconductor patterning stamp are developed to fabricate OFETs with channel lengths down to 3 µm over a large area without using any chemicals or causing any damage to the active layer. 2D 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 -DNTT) monolayer OFETs developed by this new approach shows decent performance properties with a low threshold voltage (VTH ) less than 0.5 V, intrinsic mobility higher than 10 cm2 V-1 s-1 and a subthreshold swing (SS) less than 100 mV dec-1 . The proposed patterning approach is completely comparable with ultraflexible parylene substrate less than 2 µm thick. By further reducing the channel length down to 2 µm and using the monolayer OFET in an AC/DC rectifying circuit, the measured cutoff frequency is up to 17.3 MHz with an input voltage of 4 V. The newly proposed electrode transfer and patterning stamps have addressed the long-lasting compatibility problem of depositing electrodes onto 2D organic monolayer and the semiconductor patterning. It opens a new path to reduce the fabrication cost and simplify the manufacturing process of high-density OFETs for more advanced electronic or biomedical applications.

2.
Small ; 18(8): e2106066, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34881811

RESUMO

In the development of flexible organic field-effect transistors (OFET), downsizing and reduction of the operating voltage are essential for achieving a high current density with a low operating power. Although the bias voltage of the OFETs can be reduced by a high-k dielectric, achieving a threshold voltage close to zero remains a challenge. Moreover, the scaling down of OFETs demands the use of photolithography, and may lead to compatibility issues in organic semiconductors. Herein, a new strategy based on the ductile properties of organic semiconductors is developed to control the threshold voltage at close to zero while concurrently downsizing the OFETs. The OFETs are fabricated on prestressed polystyrene shrink film substrates at room temperature, then thermal energy (160 °C) is used to release the strain. The OFETs conformally attached to the wrinkled structure are shown to locally amplify the electric field. After shrinking, the horizontal device area is reduced by 75%, and the threshold voltage is decreased from -1.44 to -0.18 V, with a subthreshold swing of 74 mV dec-1 and intrinsic gain of 4.151 × 104 . These results reveal that the shrink film can be generally used as a substrate for downsizing OFETs and improving their performance.


Assuntos
Semicondutores , Transistores Eletrônicos
3.
Opt Express ; 29(19): 30035-30044, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614735

RESUMO

Coherent modulation imaging (CMI) is an effective lensless diffraction imaging method with fast algorithmic convergence and high robustness to data defects. In the reported algorithms for CMI, one important requirement is that the modulator function need to be known a priori; and an additional step for the modulator characterization is required to be carried out in advance by other methods, such as ptychography, which could be cumbersome in practice. Here, we propose an improved algorithm that allows for the transmission function of a completely unknown modulator to be recovered during the same iterative process of image reconstruction. We have verified the method in both simulations and optical experiments. This improvement would turn CMI into a more practical and standalone technique for broader applications in biology and materials science.

4.
Adv Mater ; 32(33): e2001591, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32584502

RESUMO

There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods. In response to these issues, the construction of electronic devices from renewable or biodegradable materials that decompose to harmless by-products is becoming a topic of great interest. Such "green" electronic devices need to be fabricated on industrial scale through low-energy and low-cost methods that involve low/non-toxic functional materials or solvents. This review highlights recent advances in the development of biodegradable materials and processing strategies for electronics with an emphasis on areas where green electronic devices show the greatest promise, including solar cells, organic field-effect transistors, light-emitting diodes, and other electronic devices.

5.
Ultramicroscopy ; 214: 112990, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413680

RESUMO

Coherent modulation imaging (CMI) has been shown to be an effective lensless diffraction approach to imaging general extended samples with fast algorithmic convergence and high robustness to data imperfection. Being a single-shot technique, CMI holds a high potential for imaging dynamics with ultrafast pulses like the ones from free-electron lasers. In the reported work, strong modulators have been suggested for CMI to have the optimal performance, which may be an obstacle for the wide adoption of the method. Here we show that with our improved reconstruction algorithm the requirements on the modulation depth and feature size of a modulator can be relaxed. Furthermore, we demonstrate that when cascade configuration is used, the modulators can be even weaker while providing lower image errors in reconstruction than the case of a single modulator. Detailed numerical studies in both far-field and near-field experiment geometry are given via simulation. A relaxed requirement on modulators in CMI could pave the way for its wide use in biology and materials science.


Assuntos
Simulação por Computador , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Interferência/métodos , Difração de Raios X/métodos , Algoritmos , Microscopia de Interferência/instrumentação , Microscopia de Contraste de Fase , Difração de Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA