RESUMO
Carbon nanomaterials (CNMs) - amendments with carbon in nanoscale form -could potentially enhance fertilizer delivery efficiency in agriculture, but their interaction with soil properties and nutrient co-mobility, especially in coarse-textured soils, remain poorly understood. We conducted a column leaching study in repacked soil columns to compare the co-leaching of novel water-dispersible CNMs and soil nutrients across two levels of CNMs applications (200 & 400 mg kg-1), two fertilization rates (low:80 mg kg-1 of N, P and K and high: 200 mg N kg-1, 100 mg P kg-1, 200 mg K kg-1, applied as ammonium nitrate, potassium phosphate, and potassium nitrate) and two soils (Spodosol with pH = 5.1, Alfisol with pH = 6.5). We imposed 12 leaching events to each column, with each leaching event adding water equivalent to the soil-pore volume (250 mL), resulting in cumulative leaching of 3000 mL of water through each column. CNMs applications reduced cumulative leaching losses of NO3-N (Spodosol: 8-12 %, Alfisol: 9-19 %), NH4-N (Spodosol: 2-14 %, Alfisol: 9-14 %), P (Spodosol: 23-27 %, Alfisol: 23-36 %) and K (Spodosol: 17-23 %, Alfisol: 24-26 %) compared to fertilized columns without CNMs. CNMs increased soil pH by up to 0.3 units (Spodosol) or 0.5 units (Alfisol), while lowering electrical conductivity by 15-20 % at the high fertilization rate in both soils. Columns with water-dispersible CNMs accumulated 25-30 % more total C in the base sections of the Alfisol compared to the Spodosol, indicating faster downward movement through the soil profile. Overall, we demonstrated that CNMs have the potential to reduce nutrient leaching in coarse-textured soils, which could be particularly beneficial in high-input intensive agricultural systems.
RESUMO
Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.
Assuntos
Carvão Vegetal , Peróxidos , Carvão Vegetal/química , Peróxidos/química , Nitrogênio/química , Compostos Azo/química , Catálise , Espécies Reativas de Oxigênio/metabolismo , Benzenossulfonatos/química , Recuperação e Remediação Ambiental/métodosRESUMO
The contamination of paddy fields by cadmium and lead is a major issue in China. The consumption of rice grown in heavy metals contaminated areas poses severe health risks to humans, where bioavailability and bioaccessibility remains the critical factor for risk determination. Selenium nanoparticles (Se-NPs) can mitigate the toxicity of heavy metals in plants. However, there exists limited information regarding the role of Se-NPs in dictating cadmium (Cd) toxicity in rice for human consumption. Moreover, the impact of Se-NPs under simultaneous field and laboratory controlled conditions is rarely documented. To address this knowledge gap, a field experiment was conducted followed by laboratory scale bioavailability assays. Foliar application of Se-NPs and selenite (at 5, 10 mg L-1) was performed to assess their efficiency in lowering Cd accumulation, promoting Se biofortification in rice grains, and evaluating Cd exposure risk from contaminated rice. Obtained results indicate that foliar treatments significantly reduced the heavy metal accumulation in rice grains. Specifically, Se-NP 10 mg L-1 demonstrated higher efficiency, reducing Cd and Pb by 56 and 32 % respectively. However, inconsistent trends for bioavailable Cd (0.03 mg kg-1) and bioaccessible (0.04 mg kg-1) were observed while simulated human rice intake. Furthermore, the foliage application of Se-NPs and selenite improved rice quality by elevating Se, Zn, Fe, and protein levels, while lowering phytic acid content in rice grains. In summary, this study suggests the promising potential of foliage spraying of Se-NPs in lowering the health risks associated with consuming Cd-contaminated rice.
Assuntos
Cádmio , Oryza , Selênio , Oryza/metabolismo , Cádmio/metabolismo , Humanos , Selênio/farmacologia , Células CACO-2 , Poluentes do Solo/metabolismo , Disponibilidade Biológica , Nanopartículas , China , Folhas de Planta/metabolismo , Metais PesadosRESUMO
Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.
Assuntos
Biodegradação Ambiental , Metais Pesados , Reguladores de Crescimento de Plantas , Pseudomonas fluorescens , Sedum , Poluentes do Solo , Solo , Sedum/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solo/química , Pseudomonas fluorescens/metabolismo , Microbiologia do SoloRESUMO
The application of carbon nanoparticles (CNPs) and biochar in agriculture for improving plant health and soil quality and alleviating metal stress offers alternative approaches to meet the ever-increasing demand for food. However, poor understanding of their roles in improving crop production under Cu stress represents a significant obstacle to their wide application in agriculture. To clarify how CNPs and biochar affect corn (Zea mays L.) seed germination, seedling growth, plant health, and nutrient uptake under different Cu stress levels, soil-less Petri-dish and greenhouse soil-based bioassays were conducted. The results revealed that CNPs and biochar stimulated corn seed germination and seedling growth. Besides, they were effective in immobilizing Cu2+ sorption in sandy soil and alleviating Cu stress for plant growth, as shown by the increased plant height and dry biomass. The plant nutrient uptake efficiency (NUE) was significantly increased by CNPs, with a maximum increase of 63.1% for N and 63.3% for K at the highest Cu2+ stress level (400 mg Cu2+ L-1). In contrast, non-significant effects on NUE were observed with biochar treatments regardless of Cu stress levels. Interestingly, CNPs significantly increased plant uptake of Cu in the Petri dish test, while biochar inhibited plant uptake of Cu under both experimental conditions. Principle component analysis (PCA) and Pearson correlation analysis indicated that CNPs mitigated Cu stress mainly by elevating antioxidant enzyme activities, enhancing plant photochemical efficiency, and increasing plant uptake of N and K, while biochar was more likely to reduce bioavailability and uptake of Cu in the plant. These findings have great implications for the application of CNPs and biochar as plant growth stimulators and de-toxicity agents in agriculture.
Assuntos
Nanopartículas , Poluentes do Solo , Cobre/farmacologia , Cobre/análise , Zea mays , Carvão Vegetal/farmacologia , Solo , Plântula , Sementes , Poluentes do Solo/análiseRESUMO
The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.
Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Triticum , Biofortificação , Poluentes do Solo/análise , Minerais , Grão Comestível/químicaRESUMO
Foliar application of zinc (Zn) or silicon nanoparticles (Si-NPs) may exert regulatory effects on cadmium (Cd) accumulation in rice grains, however, their impact on Cd bioavailability during human rice consumption remains elusive. This study comprehensively investigated the application of Zn with or without Si-NPs in reducing Cd accumulation in rice grains as well to exactly evaluate the potential risk of Cd exposure resulting from the rice consumption by employing field experiment as well laboratory bioaccessibility and bioavailability assay. Sole Zn (ZnSO4) or in combination with Si (ZnSO4 +Si and ZnO+Si) efficiently lowered the Cd concentration in rice grains. However, the impact of bioaccessible (0.1215-0.1623 mg kg-1) and bioavailable Cd (0.0245-0.0393 mg kg-1) during simulated human rice consumption depicted inconsistent trend. The straw HCl-extractable fraction of Cd (FHCl-Cd) exhibited a significant correlation with total, bioaccessible, and bioavailable Cd in grains, indicating the critical role of FHCl-Cd in Cd accumulation and translocation from grains to human. Additionally, foliar spraying of Zn+Si raised the nutritional value of rice grains, leading to increased protein content and reduced phytic acid concentration. Overall, this study demonstrates the potential of foliar application of ZnSO4 +Si in mitigating the Cd levels in rice grains and associated health risks upon consumption.
Assuntos
Oryza , Poluentes do Solo , Humanos , Zinco/metabolismo , Silício/farmacologia , Cádmio/metabolismo , Oryza/metabolismo , Disponibilidade Biológica , Digestão , Poluentes do Solo/metabolismo , SoloRESUMO
The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii). The results of pot experiment revealed that application of IAA at 0.2 mg/L, BR at 0.4 mg/L, and ABA at 0.2 mg/L demonstrated notable potential as optimal dosage for Cd/Pb/Zn phytoextraction in S. alfredii. The findings of subcellular level of Cd/Pb/Zn in leaves showed that IAA (0.2 mg/L), BR (0.4 mg/L) or ABA (0.2 mg/L) promoted the HMs storage in the soluble and cell wall fraction, therefore contributing HMs subcellular compartmentation. In addition, application of PGRs notably enhanced the antioxidant system (SOD, CAT, POD, APX activities) while reducing lipid peroxidation (MDA content) in S. alfredii, consequently improving HMs tolerance and growth of S. alfredii. Moreover, the results of field trial showed that application of BR, IAA, or ABA+BR substantially improved the growth of S. alfredii by inducing plants biomass and augmenting the levels of photosynthetic pigment contents. Notably, ABA+BR noticed the highest theoretical biomass by 42.9 %, followed by IAA (41.6 %), and BR (36.4 %), as compared with CK. Additionally, ABA+BR treatment showed effectiveness in removing the Cd by 103.4 %, while BR and IAA led to a significant increase of Pb and Zn removal by 239 % and 116 %, respectively, when compared with CK. Overall, the results of this study highlights that the foliar application of IAA, BR, or ABA+BR can serve as viable strategy to boosting phytoremediation efficiency of S. alfredii in contaminated soil by improving the biomass and metal accumulation in harvestable parts.
Assuntos
Metais Pesados , Sedum , Poluentes do Solo , Cádmio/análise , Reguladores de Crescimento de Plantas , Chumbo , Metais Pesados/análise , Ácido Abscísico , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/químicaRESUMO
The phytohormones cytokinins (CKs) are known to regulate apical/auxiliary meristems, control shoot growth and are associated with nutrient uptake and high biomass production. In this study, different cytokinins were tested on Sedum alfredii (S.alfredii) for shoot proliferation and growth performance as well as their correlation with phytoextraction efficiency. Among the tested cytokinins, Zeatin (ZTN) treatments produced the highest number of shoots (5-6 per explant) with 5 and 10 µM ZTN concentrations which are shown as zeatin (ZTN) > kinetin (KTN) > benzylaminopurine (BA) > thidiazuron (TDZ). Maximum biomass production was produced on these media. The maximum biomass (0.14 g) was found in 10 µM ZTN concentration with a 1-fold difference (mean value: 0.02 g) from CK (0.12 g). However, the lowest biomass (0.11 g) was found with 4 µM TDZ, with a 1-fold difference (mean value: 0.02 g) from CK (0.13 g) which suppressed shoot growth. The leaf area and leaf chlorophyll index were significantly increased in all cytokinins except TDZ, and the relation was ZTN > KTN > BA>CK > TDZ. Cadmium accumulation was significantly higher in treatments containing cytokinins as compared to cytokinin-free media. Zeatin at 10 µM concentration was the most effective for high biomass production and correlated with higher cadmium uptake efficiency. The results suggest that cytokinins particularly ZTN, play a crucial role in enhancing both biomass production and cadmium, uptake efficiency in S. alfredii. Therefore, in large-scale phytoremediation initiatives conducted in field conditions, cytokinins can be utilized as growth regulators to enhance biomass production and cadmium extraction efficiency in S.alfredii.
Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Ecótipo , Citocininas , Biodegradação Ambiental , Zeatina , Proliferação de Células , Poluentes do Solo/análise , Raízes de Plantas/químicaRESUMO
Introduction and aims: In the context of increasing population and decreasing soil fertility, food security is one of humanity's greatest challenges. Large amounts of waste, such as sewage sludge, are produced annually, with their final disposal causing environmental pollution and hazards to human health. Sludge has high amounts of nitrogen (N), and, when safely recycled by applying it into the soil as composted sewage sludge (CSS), its residual effect may provide gradual N release to crops. A field study was conducted in the Brazilian Cerrado. The aims were to investigate the residual effect of successive applications of CSS as a source of N in the common bean (Phaseolus vulgaris L. cv. BRS Estilo)-palisade grass (Urochloa brizantha (A.Rich.) R.D. Webster)-soybean (Glycine max L.) rotation under no-tillage. Additionally, N cycling was monitored through changes in N metabolism; the efficiency of biological N2 fixation (BNF) and its implications for plant nutrition, development, and productivity, was also assessed. Methods: The experiment consisted of a randomized complete block design comparing four CSS rates (10, 15, 20, and 25 Mg ha-1, wet basis) to a control treatment (without adding mineral or organic fertilizer) over two crop years. Multiple plant and soil analyses (plant development and crop yield, Falker chlorophyll index (FCI), enzymatic, biochemical, 15N natural abundance, was evaluated, root and shoot N accumulation, etc.) were evaluated. Results and discussion: Results showed that CSS: i) maintained adequate N levels for all crops, increasing their productivity; ii) promoted efficient BNF, due to the stability of ureide metabolism in plants and increased protein content; iii) increased the nitrate content and the nitrate reductase activity in soybean; iv) affected urease activity and ammonium content due to changes in the plant's urea metabolism; v) increased N accumulation in the aerial part of palisade grass. Composted sewage sludge can be used as an alternative source to meet crops' N requirements, promoting productivity gains and N cycling through forage and improving N metabolism.
RESUMO
Arsenic (As) toxicity threshold values (TTVs) for plants are fundamental to both establishing regional As reference values in soil and performing risk assessment. However, TTVs vary with plant species and soil types. In this study, a hydroponic experiment with 16 plant species was conducted to screen the most As-sensitive plant species. The results showed that the EC20 (available As concentration at which shoot biomass or height is inhibited by 20%) values were 1.38-104.4 mg L-1 for shoot height and 0.24-42.87 mg L-1 for shoot fresh biomass. Rice was more sensitive to As toxicity than the other species. Therefore, it was chosen as the ecological receptor in the pot experiment on As phytotoxicity in nine types of soils collected from Fujian Province in South China. The EC10 and EC20 with respect to rice shoot height were 3.72-29.11 mg kg-1 and 7.12-45.60 mg kg-1, respectively. Stepwise regression analysis indicated that free iron oxide concentration is the major factor that affects As bioavailability in soil, and ECx (x = 10, 20, and 50) of soil available As for shoot height was positively related to free iron oxide concentration in soil. In addition, soil cation exchange capacity, clay (<0.002 mm) content, and exchangeable magnesium content are also important factors influencing As phytotoxicity in acidic soils. The regression models can be used to predict As phytotoxicity in acidic soils.
RESUMO
A significant bottleneck of current agricultural systems remains the very low agronomic efficiency of conventional agrochemicals, particularly in sandy soils. Carbon nanomaterials (CNMs) have been proposed to address this inefficiency in sandy soils, which could potentially improve soil fertility and enhance crop growth and physiological processes. However, the effects of different rates of CNMs on crop physiological and soil biochemical quality in sandy soils must be compared to other carbon sources (e.g., biochar) before CNMs can be broadly used. To address this, a 70-day pot experiment was set up, growing lettuce under ten treatments: a negative control with no CNMs, biochar or fertilizer; a fertilizer-only control; three CNMs-only unfertilized treatments (CNMs at 200, 400 and 800 mg kg-1 soil); two biochar treatments with fertilizer (biochar at 0.5% and 1% by soil mass + fertilizer); and three CNMs treatments with fertilizer (CNMs at 200, 400 and 800 mg kg-1 soil + fertilizer). A novel amorphous, water-dispersible, and carboxyl-functionalized CNMs with pH of 5.5, zeta potential of -40.6 mV and primary particle diameter of 30-60 nm was used for this experiment. Compared to the fertilizer-only control, CNMs applied at low to medium levels (200-400 mg kg-1) significantly increased lettuce shoot biomass (20-21%), total chlorophyll (23-27%), and fluorescence and photosynthetic activities (4-10%), which was associated with greater soil nutrient availability (N: 24-58%, K: 68-111%) and higher leaf tissue accumulation (N: 25-27%; K: 66%). Low to medium levels of CNMs also significantly increased soil biochemical properties, such as higher soil microbial biomass carbon (27-29%) and urease enzyme activity (34-44%) relative to fertilizer-only applications. In contrast, biochar (0.5%) increased lettuce biomass relative to fertilizer-only but had no significant effect on soil fertility and biological properties. These results suggest that CNMs at low to medium application rates are a superior carbon-based amendment relative to biochar in sandy soils.
Assuntos
Carbono , Nanoestruturas , Solo , Areia , Lactuca , FertilizantesRESUMO
Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii). A total of six water potential gradients were set: 0 ~ -15 kPa (T1), -15 ~ -30 kPa (T2), -30 ~ -45 kPa (T3), -45 ~ -60 kPa (T4), -60 ~ -75 kPa (T5), and -75 ~ -90 kPa (T6). Different water potential treatments had a significant effect on plant growth and metal uptake efficiency. Compared to T3, T2 was more effective in promoting plant growth and development, with an increase in biomass of 23% and 17% in both fresh weight (FW) and dry weight (DW), respectively. T2 and T3 had the highest cadmium (Cd) content in the shoot (280.2 mg/kg) and (283.3 mg/kg), respectively, whereas T1 had the lowest values (204.7 mg/kg). Cd availability for plants in the soil was affected by moving soil moisture cycles. Changes in soil moisture that were either too high or too low compared to the ideal soil water content for S. alfredii growth resulted in a significant reduction in Cd accumulation in shoots. Tryptophan, phenylalanine, and other amino acids were accumulated in T5, whereas only tryptophan and phenylalanine slightly increased in T1. Sugars and alcohols such as sucrose, trehalose, mannitol, galactinol, and mannobiose increased in T5, while they decreased significantly in T1. Interestingly, in contrast to T1, the two impaired metabolic pathways in T5 (galactose and starch metabolism) were identified to be glucose metabolic pathways. These findings provide scientific information (based on experiments) to improve biomass production and metal uptake efficiency in hyperaccumulating ecotype of S. alfredii for phytoremediation-contaminated agricultural fields.
Assuntos
Sedum , Poluentes do Solo , Cádmio/análise , Sedum/metabolismo , Ecótipo , Solo/química , Desidratação/metabolismo , Triptofano , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Fotossíntese , Biodegradação AmbientalRESUMO
Heavy metal pollution in metropolitan soils poses significant risks to human health and the entire ecosystem. Effective mitigation strategies and technologies are crucial for addressing these environmental issues. Fast-growing trees are an essential part of phytoremediation projects all over the world and provide long-term ecological benefits to mankind. This study assessed the lead tolerance and phytoremediation potential of a fast-growing soapberry tree species (Sapindus mukorossi) in moderately contaminated soil. Two independent experiments were conducted to assess its tolerance at (i) germination level and (ii) prolonged growth stage. In the germination experiments, seeds were exposed to lead (II) nitrate Pb (NO3)2 at various concentrations (0, 5, 10, 20, 50, 100, 200, 300, 400 and 500 µM) for 120 days. Results showed significant differences in germination time, germination index, seedling vigor index, energy of germination, final germination, germination inhibition, seedling height and root/shoot weight compared to the control experiments. In the prolonged growth experiments, seedlings were grown for six months in soils amended/spiked with different Pb concentrations (T0 = 0, T1 = 20, T2 = 50, T3 = 100, T4 = 150 and T5 = 200 mg kg-1 soil) and their biomass was determined. The highest biomass achieved in six months (T0: 12.62 g plant-1), followed by (T1: 12.33 g plant-1), (T2: 12.42 g plant-1), (T3: 11.86 g plant-1), (T4: 10.86 g plant-1) and (T5: 10.06 g plant-1) respectively. S. mukorossi showed no visible signs of Pb toxicity over a six-month period. During six months of exposure, the total Pb content in S. mucrossi tissues were classified as roots > leaves > stems. The highest cumulative absorption of Pb occurred between the fourth and fifth months of exposure. Maximum transfer factor (TF) was detected during the fourth month ranging from 0.888 to 1.012 for the different Pb concentrations. Furthermore, the growth behavior, lead accumulation, bioconcentration factors (BCF) and tolerance index (TI) indicated that S. mucrossi may tolerate moderate Pb concentrations for longer periods. These findings suggest that S. mukorossi may be deployed for long-term phytoremediation coupled with urban forest applications in the future.
Assuntos
Sapindus , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Chumbo/toxicidade , Raízes de Plantas/química , Plântula/química , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Árvores , China , AclimataçãoRESUMO
Accurate description of Cd micro-zone distribution and accumulation is the prerequisite for revealing Cd transfer and transformation processes. However, to date, the role of soil pores in the Cd micro-zone distribution characteristics in undisturbed soil is still unclear. In this study, the obvious heterogeneous distribution of Cd in and around the soil pores at the cross-sectional surface of the tropical undisturbed topsoil was visualized by the combination of X-ray micro-computed tomography and scanning electron microscope-energy dispersive spectroscopy. For both the air space and water-holding pores, the micro-zone distribution characteristics of Cd around the pores were dominated by pore sizes. For macropores and mesopores, Cd preferred to distribute in the micro-zone within 167.5-335 µm from pores. But for micropores, the highest content percentage of Cd was exhibited in the micro-zone within 67-167.5 µm from pores. The random forest model revealed that the occurrence of Fe (13.83%) and P (13.59%) contributed most to Cd micro-zone distribution around air space pores. While for water-holding pores, Fe occurrence (18.30%) contributed more significantly than P (11.92%) to Cd micro-zone distribution. Our study provided new insights into Cd retention mechanism, which is help for accessing Cd migration and transformation.
RESUMO
Rationally designing highly active oxygen evolution reaction (OER) electrocatalysts with robust stability is critical for industrial electrochemical water splitting. Hierarchical iron-nickel oxyhydroxide nanosheets directly grown on porous TiFe2-based intermetallics are designed and prepared as OER catalysts. The best-performing nanosheets only need 295 mV to achieve 100 mA cm-2, along with exceptional durability at a high current density of 1000 mA cm-2. This work introduces a scalable strategy for producing robust OER catalysts that have potential for industrial applications.
RESUMO
Accurate baseflow estimation is critical for water resources evaluation and management, and non-point source pollution quantification. Nonlinear reservoir algorithm (NRA) has been increasingly applied to baseflow separation because of its good approximation to the real groundwater discharge (commonly dominated by the unconfined aquifer) in most watersheds. However, in the rainy regions, large uncertainties may remain in the traditional NRA-separated baseflow sequences due to its empirical transition function for the rising limb of discharge process, and the evident variations of baseflow recession in the initial period of the falling limb caused by the disturbance from surface flow or rainfall events. To improve the reliability of baseflow separation, a self-adaptive non-linear reservoir algorithm (SA-NRA) was developed in this study based on the NRA, a self-adaptive groundwater discharge modified parameter, and the Particle Swarm Optimization algorithm (PSO). The validation of SA-NRA in a rainy watershed of eastern China showed that SA-NRA could be the approach to provide a goodness-of-fit for baseflow recession behaviors in the rainy regions. The traditional NRA and Eckhardt's two-parameter recursive digital filter (ERDF), calibrated (or validated) only with the pure baseflow recession data, can hardly provide reliable baseflow predictions for the non-pure baseflow recession periods (including the rising limb and the falling limb with surface flow or rainfall disturbance) due to the apparent variations of baseflow recession behavior. Therefore, more attentions should be paid to the uncertainties of baseflow separation for the non-pure baseflow recession periods in the rainy regions.
Assuntos
Monitoramento Ambiental , Movimentos da Água , Reprodutibilidade dos Testes , Algoritmos , China , RiosRESUMO
Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.
Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Oryza/química , Cádmio/análise , Agricultura , Solo/química , Nitrogênio/análise , ChinaRESUMO
Cadmium (Cd) bioavailability in the rhizosphere makes an important difference in grain Cd accumulation in wheat. Here, pot experiments combined with 16S rRNA gene sequencing were conducted to compare the Cd bioavailability and bacterial community in the rhizosphere of two wheat (Triticum aestivum L.) genotypes, a low-Cd-accumulating genotype in grains (LT) and a high-Cd-accumulating genotype in grains (HT), grown on four different soils with Cd contamination. Results showed that there was non-significant difference in total Cd concentration among four soils. However, except for black soil, DTPA-Cd concentrations in HT rhizospheres were higher than those of LT in fluvisol, paddy soil and purple soil. Results of 16S rRNA gene sequencing showed that soil type (52.7%) was the strongest determinant of root-associated community, while there were still some differences in rhizosphere bacterial community composition between two wheat genotypes. Taxa specifically colonized in HT rhizosphere (Acidobacteria, Gemmatimonadetes, Bacteroidetes and Deltaproteobacteria) could participate in metal activation, whereas LT rhizosphere was highly enriched by plant growth-promoting taxa. In addition, PICRUSt2 analysis also predicted high relative abundances of imputed functional profiles related to membrane transport and amino acid metabolism in HT rhizosphere. These results revealed that the rhizosphere bacterial community may be an important factor regulating Cd uptake and accumulation in wheat and indicated that the high Cd-accumulating cultivar might improve Cd bioavailability in the rhizosphere by recruiting taxa related to Cd activation, thus promoting Cd uptake and accumulation.
Assuntos
Cádmio , Poluentes do Solo , Cádmio/metabolismo , Triticum , Rizosfera , Solo/química , RNA Ribossômico 16S/genética , Poluentes do Solo/análise , Bactérias/metabolismo , GenótipoRESUMO
Humans are mainly exposed to cadmium (Cd) due to the rice consumption, however there exist considerable differences across rice cultivars in terms of Cd absorption and accumulation in the grains, and subsequent release after digestion (bioaccessibility), as well as uptake by Caco-2 cells of humans (bioavailability). This study comprised of field and lab simulation trials where in the field, firstly 39 mid-rice cultivars were screened for their phytoremediation potential coupled with safe production in relation to uptake and translocation of Cd. Lower Cd concentrations (Ë0.2 mg kg-1) in polished rice of 74 % cultivars were ascribed to the increased root to straw translocation indicating that straw may acquire higher accumulation of Cd. Furthermore, the ionomic profile demonstrated that the spatial distribution of metals in different rice organs corresponds to the plant growth morphology. In the second year, in vitro-in vivo assay model was employed to assess the bioaccessibility and bioavailability of Cd in polished rice and to further estimate the daily Cd intake by humans through rice grains. The results of bioaccessibility and bioavailability assays and daily estimated Cd intake presented the corresponding values of 39.02-59.76 %, 8.69-24.26 %, and 0.0185-0.9713 µg kg-1 body weight day-1, respectively. There exists a strong connection between total Cd and bioaccessible Cd to humans (R2 = 0.94, P < 0.01). Polynomial fitting (R2 = 0.91, P < 0.01) showed a better statistically significant correlation between total Cd contents and bioavailable levels, suggesting that in vitro-in vivo assays should be considered in future studies. The results of field experiments and in vitro-in vivo assays recommended the Tianyouhuazhan (MR-29), Heliangyou1hao (MR-17), and Yongyou15 (MR-1) as suitable mid-rice cultivars for the phytoremediation of slightly Cd contaminated soils coupled with rice agro-production due to their high nutritional value and low total and bioavailable Cd for human.