Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Nanobiotechnology ; 22(1): 243, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735927

RESUMO

Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestruturas , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Humanos , Aptâmeros de Nucleotídeos/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
2.
J Appl Crystallogr ; 57(Pt 2): 380-391, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596742

RESUMO

A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å-1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å-1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38656317

RESUMO

CONTEXT: Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE: To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN: From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING: This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS: PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS: Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES: PDOs retained key genetic and morphological features of their parental tumors. RESULTS: PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION: The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.

4.
3D Print Med ; 10(1): 2, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246981

RESUMO

BACKGROUND: Surgical management for intracranial and extracranial communicating tumors is difficult due to the complex anatomical structures. Therefore, assisting methods are urgently needed. Accordingly, this study aimed to investigate the utility of a three-dimensional (3D)-printed model in the treatment of intracranial and extracranial communicating tumors as well as its applicability in surgical planning and resident education. METHODS: Individualized 3D-printed models were created for eight patients with intracranial and extracranial communicating tumors. Based on these 3D-printed models, a comprehensive surgical plan was made for each patient, after which the patients underwent surgery. The clinicopathological data of patients were collected and retrospectively analyzed to determine surgical outcomes. To examine the educational capability of the 3D-printed models, specialists and resident doctors were invited to review three of these cases and then rate the clinical utility of the models using a questionnaire. RESULTS: The 3D-printed models accurately replicated anatomical structures, including the tumor, surrounding structures, and the skull. Based on these models, customized surgical approaches, including the orbitozygomatic approach and transcervical approach, were designed for the patients. Although parameters such as operation time and blood loss varied among the patients, satisfactory surgical outcomes were achieved, with only one patient developing a postoperative complication. Regarding the educational applicability of the 3D-printed model, the mean agreement for all eight questionnaire items was above six (seven being complete agreement). Moreover, no significant difference was noted in the agreement scores between specialists and residents. CONCLUSION: The results revealed that 3D-printed models have good structural accuracy and are potentially beneficial in developing surgical approaches and educating residents. Further research is needed to test the true applicability of these models in the treatment of intracranial and extracranial communicating tumors.

5.
CNS Neurosci Ther ; 30(1): e14495, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849438

RESUMO

AIMS: Glioma is characterized by an immunosuppressed environment and a poor prognosis. The accumulation of Amyloid ß (Aß) leads to an active environment during the early stages of Alzheimer's disease (AD). Aß is also present in glioma tissues; however, the biological and translational implications of Aß in glioma are elusive. METHODS: Immunohistochemical (IHC) staining, Kaplan-Meier (KM) survival analysis and Cox regression analysis on a cohort of 79 patients from our institution were performed to investigate the association between Aß and the malignancy of glioma. Subsequently, the potential of oligomer-Aß42 (OAß42) to inhibit glioma growth was investigated in vivo and in vitro. Immunofluorescence staining and phagocytosis assays were performed to evaluate the activation of microglia. Finally, RNA-seq was utilized to identify the predominant signaling involved in this process and in vitro studies were performed to validate them. RESULTS: A positive correlation between Aß and a favorable prognosis was observed in glioma. Furthermore, OAß42 suppressed glioma growth by enhancing the phagocytic activity of microglia. Insulin-like growth factor 1 (IGF-1) secreted by OAß42-activated microglia was essential in the engulfment process. CONCLUSION: Our study proved an anti-glioma effect of Aß, and microglia could serve as a cellular target for treating glioma with OAß42.


Assuntos
Doença de Alzheimer , Glioma , Humanos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Microglia , Doença de Alzheimer/metabolismo , Fagocitose , Glioma/metabolismo , Camundongos Transgênicos
6.
Medicine (Baltimore) ; 102(35): e34971, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657035

RESUMO

INTRODUCTION: Bladder diverticula (BD) can be classified into congenital and acquired forms, with the latter accounting for approximately 90% of all cases, primarily among male patients. Although BD-associated anatomical bladder outlet obstruction (BOO) is uncommon, existing literature suggests that congenital BD are more frequently observed in male children and rarely in female children. While around 70% of acquired BD are linked to BOO secondary to benign prostatic hyperplasia in male patients, clinical reports of female BD are less common. Furthermore, cases of female BD located posterior to the urethra, which lead to voiding difficulties, are exceedingly rare. CASE PRESENTATION: Herein, we present a case of laparoscopic treatment in a 53-year-old female patient diagnosed with congenital bladder diverticulum causing progressively worsening dysuria. Voiding cystourethrography revealed a soft cystic protrusion of the posterior urethral wall during voiding, which reinforced the patient's symptoms. Urodynamic examination showed elevated detrusor muscle contraction during voiding, a reduced urinary flow rate, and P/Q values indicative of significant BOO. Considering the patient's clinical condition, we performed laparoscopic bladder diverticulectomy, partial urethral croppingplasty, and cystoplasty. RESULTS: The laparoscopic bladder diverticulectomy, partial urethral croppingplasty, and cystoplasty procedures were completed thoroughly and with great success. However, complete removal of the diverticular epithelium proved challenging, resulting in an overall operative time of approximately 3 hours and 32 minutes. At the postoperative follow-up, the patient presented with symptoms of a lower urinary tract infection for a week, which were effectively resolved with oral antibiotics. At the 8-month follow-up, the patient reported normal urination and the absence of any discomfort during urination. CONCLUSION: Female bladder outlet obstruction resulting from posterior urethral BD can be challenging to visualize during transurethral cystoscopy, especially with limited angulation, and may even be overlooked. Furthermore, conventional transvaginal diverticulectomy is often difficult to perform effectively. Therefore, laparoscopic bladder diverticulectomy, partial urethral croppingplasty, and cystoplasty are considered appropriate treatment options for such cases.


Assuntos
Divertículo , Laparoscopia , Obstrução do Colo da Bexiga Urinária , Criança , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Bexiga Urinária , Uretra , Obstrução do Colo da Bexiga Urinária/etiologia , Obstrução do Colo da Bexiga Urinária/cirurgia , Divertículo/complicações , Divertículo/cirurgia , Disuria
7.
Adv Sci (Weinh) ; 10(20): e2205949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166058

RESUMO

Isocitrate dehydrogenase (IDH) mutation, a known pathologic classifier, initiates metabolic reprogramming in glioma cells and has been linked to the reaction status of glioma-associated microglia/macrophages (GAMs). However, it remains unclear how IDH genotypes contribute to GAM phenotypes. Here, it is demonstrated that gliomas expressing mutant IDH determine M1-like polarization of GAMs, while archetypal IDH induces M2-like polarization. Intriguingly, IDH-mutant gliomas secrete excess cholesterol, resulting in cholesterol-rich, pro-inflammatory GAMs without altering their cholesterol biosynthesis, and simultaneously exhibiting low levels of tumoral cholesterol due to expression remodeling of cholesterol transport molecules, particularly upregulation of ABCA1 and downregulation of LDLR. Mechanistically, a miR-19a/LDLR axis-mediated novel post-transcriptional regulation of cholesterol uptake is identified, modulated by IDH mutation, and influencing tumor cell proliferation and invasion. IDH mutation-induced PERK activation enhances cholesterol export from glioma cells via the miR-19a/LDLR axis and ABCA1/APOE upregulation. Further, a synthetic PERK activator, CCT020312 is introduced, which markedly stimulates cholesterol efflux from IDH wild-type glioma cells, induces M1-like polarization of GAMs, and consequently suppresses glioma cell invasion. The findings reveal an essential role of the PERK/miR-19a/LDLR signaling pathway in orchestrating gliomal cholesterol transport and the subsequent phenotypes of GAMs, thereby highlighting a novel potential target pathway for glioma therapy.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Neoplasias Encefálicas/metabolismo , Colesterol , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Microglia/metabolismo , MicroRNAs/genética
8.
Front Bioeng Biotechnol ; 11: 1092901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873354

RESUMO

Cancer is a major cause of human death all over the world. Traditional cancer treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and hormone therapy. Although these conventional treatment methods improve the overall survival rate, there are some problems, such as easy recurrence, poor treatment, and great side effects. Targeted therapy of tumors is a hot research topic at present. Nanomaterials are essential carriers of targeted drug delivery, and nucleic acid aptamers have become one of the most important targets for targeted tumor therapy because of their high stability, high affinity, and high selectivity. At present, aptamer-functionalized nanomaterials (AFNs), which combine the unique selective recognition characteristics of aptamers with the high-loading performance of nanomaterials, have been widely studied in the field of targeted tumor therapy. Based on the reported application of AFNs in the biomedical field, we introduce the characteristics of aptamer and nanomaterials, and the advantages of AFNs first. Then introduce the conventional treatment methods for glioma, oral cancer, lung cancer, breast cancer, liver cancer, colon cancer, pancreatic cancer, ovarian cancer, and prostate cancer, and the application of AFNs in targeted therapy of these tumors. Finally, we discuss the progress and challenges of AFNs in this field.

9.
J Neurooncol ; 162(2): 327-335, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940052

RESUMO

BACKGOUND: Neurosurgical resection is a standard local treatment for lung cancer brain metastases (BMs). This study aims to investigate whether neurosurgical resection provides survival benefit in lung cancer BMs with poor KPS. MATERIALS AND METHODS: This multicenter retrospective study included 386 lung cancer BMs with pretreatment KPS ≤ 70 among a total of 1177 lung cancer BMs treated at three centers from August 2010 to July 2021. Data analysis was performed from July to September 2022. Inverse probability of treatment weighting (IPTW) and propensity scores matching (PSM) based on propensity scoring were used to minimize bias. The main outcome was overall survival (OS) after diagnosis of BMs. Risk factors of OS were estimated using Cox proportional hazards regression models. All Characteristics were included in the multivariate Cox regression. RESULTS: 386 patients with pretreatment KPS ≤ 70 were included (age mean [SD], 57.85 [10.36] years; KPS mean [SD], 60.91 [10.11]). Among them, 111 patients received neurosurgical resection, while 275 patients did not. Baseline characteristics were balanced between groups after IPTW or PSM. Neurosurgical resection was associated with significantly better prognosis in unadjusted multivariate COX analysis (hazard ratio [HR]: 0.68, 95% confidence interval [CI]: 0.51-0.91, P = 0.01), and PSM-adjusted multivariate COX analysis (HR: 0.61, 95%CI: 0.39-0.94, P = 0.03), IPTW-adjusted multivariate COX analysis (HR: 0.58, 95%CI: 0.40-0.84, P = 0.004). OS was significantly longer in neurosurgical resection group compared with non-surgical resection group according to unadjusted data (Median OS, surgery vs non-surgery, 14.7 vs 12.5 months, P = 0.01), PSM-adjusted data (median OS, 17.7 vs 12.3 months, P < 0.01) and IPTW-adjusted data (median OS, 17.7 vs 12.5 months, P < 0.01). CONCLUSIONS: Neurosurgical resection was associated with improved survival in patients with lung cancer BMs with poor KPS, suggesting that poor KPS is not a contraindication for neurosurgical resection in these patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Criança , Estudos Retrospectivos , Avaliação de Estado de Karnofsky , Estudos de Coortes , Pontuação de Propensão , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/terapia , Contraindicações
10.
Curr Oncol ; 30(2): 2227-2236, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826133

RESUMO

BACKGROUND: Radiotherapy and surgery are the standard local treatments for lung cancer brain metastases (BMs). However, limited studies focused on the effects of radiotherapy and surgery in lung cancer BMs with poor prognosis factors. METHODS: We retrospectively analyzed 714 patients with lung cancer BMs. Analyses of overall survival (OS) and risk factors for OS were assessed by the log-rank test and Cox proportional hazard model. RESULTS: Age ≥ 65 years, a Karnofsky Performance Scale (KPS) score ≤ 70, anaplastic large-cell lymphoma kinase (ALK)/epidermal growth factor receptor (EGFR) wild type, and extracranial metastases were related to poor prognosis. Patients were stratified according to these poor prognosis factors. In patients with the ALK/EGFR wild type, whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and surgery improved the OS of patients. WBRT and SRS were the independent protective factors for OS. In patients with extracranial metastases, patients who received WBRT plus SRS or WBRT alone had longer OS than those who did not receive radiotherapy. WBRT plus SRS and WBRT were the independent protective factors for OS. CONCLUSIONS: Radiotherapy and surgery are associated with improved survival for lung cancer BMs with the ALK/EGFR wild type. Radiotherapy is associated with improved survival in lung cancer BMs with extracranial metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Idoso , Estudos Retrospectivos , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/secundário , Receptores ErbB , Prognóstico
11.
J Neurosurg ; : 1-10, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461822

RESUMO

OBJECTIVE: The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS: In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS: The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS: The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.

12.
Front Cell Dev Biol ; 10: 916415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092717

RESUMO

The current standard treatments of glioma include surgical resection, supplemented with radiotherapy and chemotherapy, but the prognosis is poor. PARP-1 (Poly ADP-ribose polymerase 1) is a hot spot for cancer-targeted therapy and was reported to be significantly elevated in glioma. In this study, we analyzed the role of PARP-1 in DNA damage repair, constructed a PARP1-related DNA-repair prognostic signature (DPS), and screened targeted drugs for glioma. RNA-seq data of 639 glioma samples were downloaded from the GEO (Gene Expression Omnibus) database and divided into PARP1_H and PARP1_L according to the front and rear thirds of the expression level of PARP-1. First, we systematically analyzed the influence of PARP-1 on DNA damage repair, prognosis, and chemoradiotherapy sensitization of glioma. All glioma patients and patients with radiotherapy or chemotherapy had a better prognosis in PARP1_L than in PARP1_H. Next, differentially expressed DNA-repair related genes (DEGs) were identified between PARP1_H and PARP1_L by LASSO (Least Absolute Shrinkage and Selection Operator) Cox analysis and applied for constructing DPS. Based on the four-gene DPS, we then developed a new nomogram to assess overall survival in glioma patients. Additionally, PARP-1 was proved an effective target for glioma therapy. So, a series of computer-aided techniques, including Discovery Studio 4.5, Schrodinger, and PyMol, were applied for the virtual screening of favorable PARP-1 inhibitors. In conclusion, this study investigated the effect of PARP-1 on glioma prognosis and the sensitization effect of radiotherapy and chemotherapy, established a novel nomogram to evaluate the overall survival of glioma patients, and further explored targeted therapy for glioma.

13.
Biomater Sci ; 10(17): 4902-4914, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861413

RESUMO

Patient-derived glioblastoma organoid (GBO) growth in hydrogels recapitulates key features of parental tumors, making GBOs a useful tool for fundamental research on cancer biology and offer deeper insight into the development of innovative therapeutic strategies for cancer treatment. Matrigel as a natural hydrogel has been widely used for 3D culture in most tumor organoid studies, but the volatility in its biochemical and biophysical properties makes it difficult to be further applied in GBO cultures. Thus, several kinds of biomimetic hydrogels from synthetic or biological polymers have been developed for tumor organoid growth. Here, we innovatively utilize a photocurable hydrogel-based biomimetic instructive system containing gelatin methacryloyl (GelMA) mixed with a hyaluronic acid (HA) hydrogel as a scaffold for generating GBOs. Furthermore, we evaluated the GBO biological properties at the transcriptome level, which showed that GBOs cultured with this hydrogel retain the expression profile of key neurodevelopmental markers, driving mutations and alternative splicing of parental tumors. Notably, GBOs cultured with the photocurable hydrogel may provide a platform for precision cancer medicine, bridging the gap between basic research and clinical application. Although significant challenges remain, biomimetic hydrogels can provide an exceptional window for the construction of tumor organoids to ensure the accuracy of the research and clinical data.


Assuntos
Glioblastoma , Gelatina/química , Glioblastoma/metabolismo , Humanos , Hidrogéis/química , Metacrilatos , Organoides , Análise de Sequência de RNA
14.
RSC Adv ; 12(27): 17208-17216, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35755578

RESUMO

The poor mechanical properties of chitosan physical hydrogels seriously hinder their application in the biomedical field. Inspired by the structure of cell tissues, a novel chitosan nanofiber (CSNF)/Hyaluronic acid (HA)/ß-glycerophosphate disodium (ß-GP) drug-loaded hydrogel was prepared by micro-dissolution and physical crosslinking. The hydrogel has a "Branch-Fruit" structure and exhibits excellent mechanical properties, good biocompatibility and cell-adhesion properties. Human cancer cells (HeLa) can adhere to the hydrogel surface, which might facilitate tumor site-specific administration of drugs. This material also exhibits high pH sensitivity, with which drug release can be triggered under acidic conditions at pH 4.00. The mechanical strength and drug release behavior of this hydrogel can be easily adjusted by varying the CSNF content.

15.
J Neurooncol ; 158(3): 463-470, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657459

RESUMO

INTRODUCTION: Surgical resection of medulloblastoma (MB) remains a challenge. At present, a variety of tracers have been used for intraoperative tumor visualization. However, there are few reports on the intraoperative visualization of MB. Hence, we reported our experience of applying fluorescein sodium (FS) in MB surgery. METHODS: We retrospectively analyzed the clinical information of patients with MB confirmed by surgery and pathology from January 2016 to December 2020 from Sun Yat-sen University Cancer Center. A total of 62 patients were enrolled, of which 27 received intraoperative FS and 35 did not. The intraoperative dose of FS was 3 mg/kg. RESULTS: Among the 62 patients, 42 were males, and twenty were females. The age of onset in the FS group was 9.588 ± 7.322, which in the non-fluorescein sodium group was 13.469 ± 10.968, p = 0.198. We did not find significant differences in tumor location, tumor size, tumor resection, tumor histology, and preoperative symptoms (hydrocephalus, headache, vomit, balance disorder) between the groups. There was no significant difference in the postoperative symptoms (hydrocephalus, headache, vomiting, balance disorder, and cerebellar mutism). However, patients in the FS group had a relatively low incidence of balance disorder and cerebellar mutism. There was definite fluorescence of tumor in all cases of the FS group, and even the tiny metastatic lesion was visible. No case had side effects related to the use of FS. CONCLUSIONS: FS is safe and effective in MB surgery. Whether the application of FS for surgery can reduce complications remains to be studied in the future.


Assuntos
Neoplasias Cerebelares , Hidrocefalia , Meduloblastoma , Mutismo , Neoplasias Cerebelares/epidemiologia , Feminino , Fluoresceína , Cefaleia , Humanos , Hidrocefalia/complicações , Masculino , Meduloblastoma/complicações , Meduloblastoma/diagnóstico , Meduloblastoma/cirurgia , Mutismo/etiologia , Estudos Retrospectivos , Sódio
16.
Ann Surg Oncol ; 29(6): 3684-3693, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181815

RESUMO

BACKGROUND: Brain metastases (BMs) are the most serious complication of lung cancer, affecting the prognosis of lung cancer patients, and pose distinct clinical challenges. This study was designed to explore the prognostic factors related to lung cancer BM and the value of surgical resection in BMs from lung cancer. METHODS: A retrospective analysis was performed on 714 patients with lung cancer BMs screened between January 2010 and January 2018 at the Sun Yat-sen University Cancer Center. A 1:1 propensity score matching analysis was performed to reduce the potential bias between the surgery and the nonsurgery group. In both the raw and the propensity-score matched dataset, univariate and multivariate Cox proportional hazards regression analyses were used to evaluate risk factors for survival. RESULTS: After matching, 258 patients (129 surgery, 129 no surgery) were analyzed. Multivariate analyses after propensity score matching demonstrated that surgical resection was an independent protective factor for overall survival (OS), and older age, lower Karnofsky Performance Scale (KPS) score, and extracranial metastases were independent risk factors for worse OS. Patients without extracranial metastases, without synchronous BM and with a single BM had a better prognosis. CONCLUSIONS: The findings showed that surgical resection, age, KPS score, and extracranial metastases are independent prognostic factors for predicting the OS of patients with lung cancer BMs, and surgical resection for brain metastatic lesions could significantly improve the OS. However, only certain groups of patients with BMs can benefit from intracranial lesion resection, such as no extracranial metastases and metachronous metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Neoplasias Encefálicas/secundário , Estudos de Coortes , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Retrospectivos
17.
Front Cell Dev Biol ; 9: 706286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368156

RESUMO

Tumor microenvironment (TME) is the cornerstone of the occurrence, development, invasion and diffusion of the malignant central nerve system (CNS) tumor, glioma. As the largest number of inflammatory cells in glioma TME, tumor associated macrophages (TAMs) and their secreted factors are indispensable to the progression of glioma, which is a well-known immunologically "cold" tumor, including the growth of tumor cells, invasion, migration, angiogenesis, cancer immunosuppression and metabolism. TAMs intimately interface with the treatment failure and poor prognosis of glioma patients, and their density increases with increasing glioma grade. Recently, great progress has been made in TAM-targeting for anti-tumor therapy. According to TAMs' function in tumorigenesis and progression, the major anti-tumor treatment strategies targeting TAMs are to hinder macrophage recruitment in TME, reduce TAMs viability or remodel TAMs phenotype from M2 to M1. Different approaches offer unique and effective anti-tumor effect by regulating the phagocytosis, polarization and pro-tumor behaviors of macrophages in the therapy of glioma. The present review summarizes the significant characteristics and related mechanisms of TAMs and addresses the related research progress on targeting TAMs in glioma.

18.
J Bone Miner Res ; 36(11): 2229-2242, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34378815

RESUMO

Defective or insufficient bone repair and regeneration are common in patients as a result of major trauma or severe disease. Cell therapy with periosteal mesenchymal progenitors, which can be limited in severe injury, serves as a promising approach; however, its efficacy is limited due to a repair-hostile ischemic tissue microenvironment after traumatic fracture. Here we report that plasminogen (Plg), a factor that is upregulated in these environments, is critical for fracture healing. Plg knockout mice had impaired trabecular and cortical bone structure and exhibited delayed and incomplete fracture healing. Interestingly, Plg deficiency greatly reduced the thickness of expanded periosteum, suggesting a role of Plg in periosteal mesenchymal progenitor-mediated bone repair. In culture, Plg increased cell proliferation and migration in periosteal mesenchymal progenitors and inhibited cell death under ischemic conditions. Mechanistically, we revealed that Plg cleaved and activated Cyr61 to regulate periosteal progenitor function. Thus, our study uncovers a cellular mechanism underlying fracture healing, by which Plg activates Cyr61 to promote periosteal progenitor proliferation, survival, and migration and improves bone repair after fracture. Targeting Plg may offer a rational and effective therapeutic opportunity for improving fracture healing. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Plasminogênio , Animais , Proliferação de Células , Proteína Rica em Cisteína 61 , Camundongos , Camundongos Knockout , Periósteo
19.
Nat Commun ; 12(1): 3424, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103524

RESUMO

Immunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages (Mϕs). Consistent with a pro-tumor role of IL-6 in alternative Mϕs polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mϕs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mϕs. Combination of IL-6 inhibition with CD40 stimulation reverses Mϕ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models, particularly inducing complete regression of GL261 tumors after checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting opportunities for GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Antígenos CD40/metabolismo , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia , Interleucina-6/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Deleção de Genes , Glioblastoma/tratamento farmacológico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Imunossupressão , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fator de Transcrição STAT3/metabolismo , Análise de Sobrevida
20.
Front Cell Dev Biol ; 9: 653240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796538

RESUMO

BACKGROUND: Proteins containing the caspase recruitment domain (CARD) play critical roles in cell apoptosis and immunity. However, the impact of CARD genes in tumor immune cell infiltration, responsiveness to checkpoint immunotherapy, and clinical outcomes of gliomas remains unclear. Here, we explore using CARD genes to depict the immune microenvironment and predict the responsiveness of gliomas to anti-PD-1 therapy. METHODS: The genome and transcriptome data of 231 patients with isocitrate dehydrogenase wild-type (IDH-wt) gliomas were retrieved from The Cancer Genome Atlas (TCGA) database to screen CARD genes associated with T lymphocyte infiltration in gliomas. Weighted co-expression network and LASSO penalized regression were employed to generate a CARD-associated risk score (CARS). Two independent and publicly available datasets were used to validate the effectiveness of CARS. RESULTS: The CARS divided the 231 glioma patients into high- and low-risk subgroups with distinct immune microenvironment and molecular features. The high-risk group had high CARS and was characterized by enrichment of dysfunctional T lymphocytes in a profound immunosuppressive microenvironment, whereas the low-risk group had low CARS and exhibited an immune exclusion genotype. Moreover, signaling aberrations including upregulation of PI3K/Akt/mTOR, NF-κB, and TGF-ß were found in the high-risk group. In contrast, the activated WNT pathway was more evident in the low-risk group. Furthermore, we found that an elevated CARS indicated a decreased overall survival for IDH-wt gliomas under standard care but a clinical benefit from checkpoint immunotherapy. CONCLUSION: This study developed an immune- and prognosis-relevant risk score, which could be used to enhance our understanding of the heterogeneity of immune microenvironment of gliomas and facilitate to identify patients who will benefit from checkpoint immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA