Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 961998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990336

RESUMO

This study aimed to assess how several sweeteners (white sugar, Siraitia grosvenorii fruit, mogrosides, and stevia glycoside) affected the flavor, fatty acid composition, and quality of braised pork. The findings indicated that braised meat prepared with sweeteners differed from typical braised pork. When simmered for 60 min, the typical braised pork with white granulated sugar exhibited a significant cooking loss (CL) and little water content. Significantly more than in the group containing Siraitia grosvenorii, mogroside, and stevia glycoside, the Thiobarbituric acid (TBARS) value increased by 14.39% (P < 0.05). The sample in the group that included mogroside had a low CL rate. After 40 min of stewing, the lean pork has the highest L* value, but the 60-min stew sample is nicely colored and stretchy. Mogroside can prevent protein, and lipid oxidation, is thermally stable and reduces CL during stewing. Additionally, Siraitia grosvenorii and stevia glycosides help prevent oxidation from intensifying during stewing. When Siraitia grosvenorii is added, lipid oxidation is significantly inhibited, and stevia glycosides are more beneficial for enhancing meat color. With an increase in heating time, the fatty acids in braised pork reduced; the unsaturated fatty acid (UFA) of the Siraitia grosvenorii fruit (SF) and mg group also fell somewhat, and the UFA: SFA ratio was higher than that of the white sugar (WS) group. The SFA content of the braised meat in the stevia glycoside group was higher than that of the WS group. In all, 75 volatile flavor elements in braised pork were discovered by Gas chromatography-ion mobility spectrometry (GC-IMS). The sweetener increased alcohols, esters, and acids in the braised pork. As stewing time increased, ketones decreased, but aldehydes and esters increased. The pork formed antioxidant peptides with great nutritional value after cooking. Braised pork with mogroside and stevia glycoside additions primarily have some protein color protection and antioxidant effects. This study may offer fresh perspectives on applying natural sweeteners and enhancing braised pork's flavor.

2.
Sci Rep ; 12(1): 2856, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190606

RESUMO

The SQUAMOSA promoter-binding protein-like (SPL) family play a key role in guiding the switch of plant growth from juvenile to adult phases. Populus euphratica Oliv. exhibit typical heterophylly, and is therefore an ideal model for studying leaf shape development. To investigate the role and regulated networks of SPLs in the morphogenesis of P. euphratica heteromorphic leaves. In this study, 33 P. euphratica SPL (PeuSPL) genes were identified from P. euphratica genome and transcriptome data. Phylogenetic analysis depicted the classification of these SPL genes into two subgroups. The expression profiles and regulatory networks of P. euphratica SPL genes analysis displayed that major P. euphratica SPL family members gradually increases from linear to broad-ovate leaves, and they were involved in the morphogenesis regulation, stress response, transition from vegetative to reproductive growth, photoperiod, and photosynthesis etc. 14 circRNAs, and 33 lncRNAs can promote the expression of 12 of the P. euphratica SPLs by co-decoying miR156 in heteromorphic leaf morphogenesis. However, it was found that the effect of PeuSPL2-4 and PeuSPL9 in leaf shape development was contrasting to their homologous genes of Arabidopsis. Therefore, it was suggested that the SPL family were evolutionarily conserved for regulation growth, but were varies in different plant for regulation of the organ development.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Morfogênese/genética , Folhas de Planta/genética , Populus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fotossíntese/genética , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , RNA Circular/fisiologia , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA