RESUMO
To develop a promising selenium supplement that overcomes the instability and poor water dispersibility of selenium nanoparticles (SeNPs), we synthesized a series of amphiphilic octenyl succinic anhydride starch (OSAS) through esterification. As the degree of substitution (DS) increased, the particle size of OSAS micelles and the critical micelle concentration (CMC) decreased. FTIR and XRD analysis confirmed the successful introduction of octenyl succinic anhydride groups onto starch. Subsequently, OSAS micelles were used as carriers to synthesize SeNPs via in situ chemical reduction, forming SeNPs-loaded self-assembled starch nano-micelles (OSAS-SeNPs). The OSAS-SeNPs exhibited spherical dispersion in water with an average diameter of 116.1 ± 2.3 nm, contributed to enhanced hydrophobic interactions. TEM images showed a core-shell structure with SeNPs as the core and OSAS as the shell. FTIR results indicated hydrogen bonding interactions between OSAS and SeNPs. Due to the negatively charged OSAS shell and hydrogen bonding (OHâ¯Se), OSAS-SeNPs remained non-aggregated for one month at room temperature, demonstrating remarkable stability. This study suggests that using OSAS can address the synthesis and stability issues of SeNPs, making it a potential selenium supplement candidate for further evaluation as an anticancer agent.
RESUMO
A heat recovery coke oven (HRCO) is one of important approaches to achieving a carbon peak and carbon neutrality in China. However, the steady operation of an HRCO is significantly influenced by the internal working conditions and the quality of lining refractories. In this work, a comprehensive study of the internal working conditions of an HRCO was carried out. The results suggest that the partition wall (PW) between the carbonization and combustion chambers is the most vulnerable area, with the corresponding traditional silica bricks inadequate for the service requirements. A reference based on a comparison of the average thermal stress and high-temperature compressive strength is offered for evaluating and selecting silica bricks for the PW. New optimized silica bricks within the reference are verified to be more applicable to the actual working conditions of an HRCO than the traditional silica bricks. As such, this work provides valuable guidance for the optimization and selection of silica bricks for the PW in an HRCO.
RESUMO
Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.
Assuntos
Trifosfato de Adenosina , Antineoplásicos , Raios Infravermelhos , Animais , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Imunoterapia , Reposicionamento de Medicamentos , Humanos , Lasers , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Alginatos/química , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Artemisininas/química , Artemisininas/farmacologiaRESUMO
The therapeutic efficacy of bone tumor treatment is primarily limited by inadequate tumor resection, resulting in recurrence and metastasis, as well as the deep location of tumors. Herein, an injectable doxorubicin (DOX)-loaded magnetic alginate hydrogel (DOX@MAH) was developed to evaluate the efficacy of an alternating magnetic field (AMF)-responsive, chemothermal synergistic therapy for multimodality treatment of bone tumors. The prepared hydrogel exhibits a superior drug-loading capacity and a continuous DOX release. This multifunctionality can be attributed to the combined use of DOX for chemotherapy and iron oxide nanoparticle-containing alginate hydrogels as magnetic hyperthermia agents to generate hyperthermia for tumor elimination without the limit on penetration depth. Moreover, the hydrogel can be formed when in contact with the calcium ions, which are abundant in bone tissues; therefore, this hydrogel could perfectly fit the bone defects caused by the surgical removal of the bone tumor tissue, and the hydrogel could tightly attach the surgical margin of the bone to realize a high efficacy residual tumor tissue elimination treated by chemothermal synergistic therapy. The hydrogel demonstrates excellent hyperthermia performance, as evidenced by in vitro cytotoxicity tests on tumor cells. These tests reveal that the combined therapy based on DOX@MAH under AMF significantly induces cell death compared to single magnetic hyperthermia or chemotherapy. In vivo antitumor effects in tumor-bearing mice demonstrate that DOX@MAH injection at the tumor site effectively inhibits tumor growth and leads to tumor necrosis. This work not only establishes an effective DOX@MAH system as a synergistic chemothermal therapy platform for treating bone tumors but also sheds light on the application of alginate to combine calcium ions of the bone to treat bone defect diseases.
Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Animais , Camundongos , Hidrogéis/farmacologia , Cálcio , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Hipertermia , Hipertermia Induzida/métodos , Alginatos , Íons , Fenômenos MagnéticosRESUMO
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Assuntos
Doença de Alzheimer , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteômica/métodos , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Córtex Cerebral/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Exposure to arsenic (As) is a major public health challenge worldwide. Chronic exposure to As can cause various human health effects, including skin diseases, cardiovascular disease, neurological disorders, and cancer. Studies have shown that As exposure can lead to disturbances in the balance of trace elements in the body. Moreover, As readily crosses the blood-brain barrier and can be enriched in the hippocampus and cortex, causing neurotoxic damage. At present, there are few reports on the effect of As on trace element levels in the central nervous system (CNS). Therefore, we sought to explore As-induced neurotoxicity and the effects of As on CNS trace element levels. METHODS: An As-induced neurological injury model in rats was established by feeding As chow for 90 days of continuous exposure, and 19 elements were detected in the hippocampus and cortex of As-exposed rats by inductively coupled plasma mass spectrometry. RESULTS: The results showed that the As levels in the hippocampus and cortex of As-exposed rats were significantly higher than those in the control group, The As levels in the cortex were significantly higher than in the hippocampus group. The levels of Cd, Ho, and Rb were increased in the hippocampus and decreased in Au, Ba, Ce, Cs, Pd, Se, Sr, and Tl in the As-exposed group, while the levels of Cd and Rb were increased and Se and Au were decreased in the cortex. Significant gender differences in the effects of As on hippocampal Cd, Ba, Rb, and Sr, and cortical Cd and Mo. CONCLUSION: It is suggested that elemental imbalance may be a risk factor for developing As toxicity plays a synergistic or antagonistic role in As-induced toxicity and is closely related to As-induced CNS damage.
Assuntos
Arsênio , Oligoelementos , Ratos , Humanos , Animais , Oligoelementos/análise , Arsênio/toxicidade , Fatores Sexuais , Cádmio , HipocampoRESUMO
BACKGROUND: This study aimed to assess the outcomes of thrombectomy with/without iliac vein stenting for young and transiently provoked DVT patients with iliac vein stenosis. METHODS: This is a retrospective analysis of a prospectively collected multicenter database. Acute, transiently provoked DVT patients between 18 and 45 years old with iliac vein stenosis were included. All patients underwent thrombectomy. Outcomes including the Villalta score, the VEINES-QOL score, and adverse events were evaluated. RESULTS: The data of 522 patients were collected of whom 75 were included, 58 underwent thrombectomy alone (nonstenting group) and 17 underwent thrombectomy and stenting (stenting group). Within 6 months, the Villalta score of patients in stenting group is lower than that of patients in nonstenting group (6 mo: 0.73 ± 0.77 vs. 1.41 ± 0.56, p = .0004), and the VEINES-QOL score of stenting group is higher than that of nonstenting group (6 mo: 89.00 ± 2.94 vs. 87.47 ± 3.72, p = .2141). At the following follow-ups, the Villalta score (12 mo: 0.56 ± 0.49 vs. 0.60 ± 0.58, p = .8266) and VEINES-QOL score (12 mo: 88.36 ± 2.29 vs. 88.31 ± 3.36, p = .9604) between the two groups are similar. CONCLUSION: The stenting group had better efficacy within 6 months after intervention, while there was no significant difference in the symptom, signs, and quality of life between two groups after 6 months within a 2-year follow-up. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (Registration Number: ChiCTR2200056073).
RESUMO
The interfacial phenomenon between liqiuid iron and coke is important for determining the melting efficiency in the blast furnace iron-making process. In this study, the interaction observed in the case of the iron-carbon (Fe-C) melt on coke substrate was investigated using a high-temperature vacuum wettability test equipment. The Fe-C melt did not wet and spread on the coke substrate with different graphitization degrees (r0) at a high temperature of 1450 °C. The contact angles changed from 124.5° to 105.3°, and the r0 increased from 9.30 to 50.00%, thus indicating a nonwetting state. The deepening of graphitization decreased the contact angle. Thereby, increasing the contact area between liquid iron and the carbonaceous material, which facilitated carbon dissolution. The irregular movements of Fe-C melt were observed in situ during the wetting process. The horizontal force of the droplet caused by interfacial tension and the contact angle; the Marangoni convection owing to the gradient of carbon concentration; and the impulse force caused by the generation, aggregation, and release of SiO bubbles at the interface were attributed to the driving force.
RESUMO
Vanadium is a well-known essential trace element, which usually exists in oxidation states in the form of a vanadate cation intracellularly. The pharmacological study of vanadium began with the discovery of its unexpected inhibitory effect on ATPase. Thereafter, its protective effects on ß cells and its ability in glucose metabolism regulation were observed from the vanadium compound, leading to the application of vanadium compounds in clinical trials for curing diabetes. Alzheimer's disease (AD) is the most common dementia disease in elderly people. However, there are still no efficient agents for treating AD safely to date. This is mainly because of the complexity of the pathology, which is characterized by senile plaques composed of the amyloid-beta (Aß) protein in the parenchyma of the brain and the neurofibrillary tangles (NFTs), which are derived from the hyperphosphorylated tau protein in the neurocyte, along with mitochondrial damage, and eventually the central nervous system (CNS) atrophy. AD was also illustrated as type-3 diabetes because of the observations of insulin deficiency and the high level of glucose in cerebrospinal fluid (CSF), as well as the impaired insulin signaling in the brain. In this review, we summarize the advances in applicating the vanadium compound to AD treatment in experimental research and point out the limitations of the current study using vanadium compounds in AD treatment. We hope this will help future studies in this field.
RESUMO
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of ß-amyloid (Aß) peptides and dysfunction of mitochondrion, which result in neuronal apoptosis and ultimately cognitive impairment. Inhibiting Aß generation and repairing mitochondrial damage are prominent strategies in AD therapeutic treatment. Luteolin, a flavonoid compound, exhibits anti-inflammatory neuroprotective properties in AD mice. However, it is still unclear whether luteolin has any effect on Aß pathology and mitochondrial dysfunction. In this study, the beneficial effect and underlying mechanism of luteolin were investigated in triple transgenic AD (3 × Tg-AD) mice and primary neurons. Our study showed that luteolin supplement significantly ameliorated memory and cognitive impairment of AD mice and exerted neuroprotection by inhibiting Aß generation, repairing mitochondrial damage and reducing neuronal apoptosis. Further research revealed that luteolin could directly bind with peroxisome proliferator-activated receptor gama (PPARγ) to promote its expression and function. In the culture of hippocampus-derived primary neurons, addition of PPARγ antagonist GW9662 or knockdown of PPARγ with its siRNA could eliminate the effect of luteolin on AD pathologies. In summary, this work revealed for the first time that luteolin effectively improved cognitive deficits of 3 × Tg-AD mice and inhibited Aß-induced oxidative stress, mitochondrial dysfunction and neuronal apoptosis via PPARγ-dependent mechanism. Hence, luteolin has the potential to serve as a therapeutic agent against AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , PPAR gama/genética , Luteolina/farmacologia , Mitocôndrias , Estresse OxidativoRESUMO
Diabetic ulcer(DU) is a chronic and refractory ulcer which often occurs in the foot or lower limbs. It is a diabetic complication with high morbidity and mortality. The pathogenesis of DU is complex, and the therapies(such as debridement, flap transplantation, and application of antibiotics) are also complex and have long cycles. DU patients suffer from great economic and psychological pressure while enduring pain. Therefore, it is particularly important to promote rapid wound healing, reduce disability and mortality, protect limb function, and improve the quality of life of DU patients. By reviewing the relevant literatures, we have found that autophagy can remove DU wound pathogens, reduce wound inflammation, and accelerate ulcer wound healing and tissue repair. The main autophagy-related factors microtubule-binding light chain protein 3(LC3), autophagy-specific gene Beclin-1, and ubiquitin-binding protein p62 mediate autophagy. The traditional Chinese medicine(TCM) treatment of DU mitigates clinical symptoms, accelerates ulcer wound healing, reduces ulcer recurrence, and delays further deterioration of DU. Furthermore, under the guidance of syndrome differentiation and treatment and the overall concept, TCM treatment harmonizes yin and yang, ameliorates TCM syndrome, and treats underlying diseases, thereby curing DU from the root. Therefore, this article reviews the role of autophagy and major related factors LC3, Beclin-1, and p62 in the healing of DU wounds and the intervention of TCM, aiming to provide reference for the clinical treatment of DU wounds and subsequent in-depth studies.
Assuntos
Complicações do Diabetes , Diabetes Mellitus , Pé Diabético , Humanos , Úlcera/terapia , Medicina Tradicional Chinesa , Proteína Beclina-1 , Qualidade de Vida , Cicatrização , Autofagia , Pé Diabético/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genéticaRESUMO
Diabetic ulcer(DU) is one of the common complications of diabetes often occurring in the peripheral blood vessels of lower limbs or feet with a certain degree of damage. It has high morbidity and mortality, a long treatment cycle, and high cost. DU is often clinically manifested as skin ulcers or infections in the lower limbs or feet. In severe cases, it can ulcerate to the surface of tendons, bones or joint capsules, and even bone marrow. Without timely and correct treatment, most of the patients will have ulceration and blackening of the extremities. These patients will not be able to preserve the affected limbs through conservative treatment, and amputation must be performed. The etiology and pathogenesis of DU patients with the above condition are complex, which involves blood circulation interruption of DU wound, poor nutrition supply, and failure in discharge of metabolic waste. Relevant studies have also confirmed that promoting DU wound angiogenesis and restoring blood supply can effectively delay the occurrence and development of wound ulcers and provide nutritional support for wound healing, which is of great significance in the treatment of DU. There are many factors related to angiogenesis, including pro-angiogenic factors and anti-angiogenic factors. The dynamic balance between them plays a key role in angiogenesis. Meanwhile, previous studies have also confirmed that traditional Chinese medicine can enhance pro-angiogenic factors and down-regulate anti-angiogenic factors to promote angiogenesis. In addition, many experts and scholars have proposed that traditional Chinese medicine regulation of DU wound angiogenesis in the treatment of DU has broad prospects. Therefore, by consulting a large number of studies available, this paper expounded on the role of angiogenesis in DU wound and summarized the research advance in traditional Chinese medicine intervention in promoting the expression of angiogenic factors [vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), and angiopoietin(Ang)] which played a major role in promoting wound angiogenesis in the treatment of DU to provide ideas for further research and new methods for clinical treatment of DU.
Assuntos
Complicações do Diabetes , Diabetes Mellitus , Humanos , Medicina Tradicional Chinesa , Úlcera , Fator A de Crescimento do Endotélio Vascular/metabolismo , Complicações do Diabetes/tratamento farmacológico , Cicatrização/fisiologiaRESUMO
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Animais , Hidrogéis/farmacologia , Fibrina , Traumatismos da Medula Espinal/terapia , Regeneração Nervosa , Fenômenos MagnéticosRESUMO
Infectious diabetic ulcers (IDU) require anti-infection, angiogenesis, and nerve regeneration therapy; however, the latter has received comparatively less research attention than the former two. In particular, there have been few reports on the recovery of mechanical nociception. In this study, a photothermal controlled-release immunomodulatory hydrogel nanoplatform is tailored for the treatment of IDU. Due to a thermal-sensitive interaction between polydopamine-reduced graphene oxide (pGO) and the antibiotic mupirocin, excellent antibacterial efficacy is achieved through customized release kinetics. In addition, Trem2+ macrophages recruited by pGO regulate collagen remodeling and restore skin adnexal structures to alter the fate of scar formation, promote angiogenesis, accompanied by the regeneration of neural networks, which ensures the recovery of mechanical nociception and may prevent the recurrence of IDU at the source. In all, a full-stage strategy from antibacterial, immune regulation, angiogenesis, and neurogenesis to the recovery of mechanical nociception, an indispensable neural function of skin, is introduced to IDU treatment, which opens up an effective and comprehensive therapy for refractory IDU.
Assuntos
Diabetes Mellitus , Nociceptividade , Humanos , Preparações de Ação Retardada , Úlcera , AntibacterianosRESUMO
Supported polyethyleneimine (PEI) adsorbent is one of the most promising commercial direct air capture (DAC) adsorbents with a long research history since 2002. Although great efforts have been input, there are still limited improvements for this material in its CO2 capacity and adsorption kinetics under ultradilute conditions. Supported PEI also suffers significantly reduced adsorption capacities when working at sub-ambient temperatures. This study reports that mixing diethanolamine (DEA) into supported PEI can increase 46% and 176% of pseudoequilibrium CO2 capacities at DAC conditions compared to the supported PEI and DEA, respectively. The mixed DEA/PEI functionalized adsorbents maintain the adsorption capacity at sub-ambient temperatures of -5 to 25 °C. In comparison, a 55% reduction of CO2 capacity is observed for supported PEI when the operating temperature decreases from 25 to -5 °C. In addition, the supported mixed DEA/PEI with a ratio of 1:1 also shows fast desorption kinetics at temperatures as low as 70 °C, resulting in maintaining high thermal and chemical stability over 50 DAC cycles with a high average CO2 working capacity of 1.29 mmol g-1 . These findings suggest that the concept of "mixed amine", widely studied in the solvent system, is also practical to supported amine for DAC applications.
RESUMO
The reduction of the cerebral glucose metabolism is closely related to the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in Alzheimer's disease (AD); however, its underlying mechanism remains unclear. In this paper, 18F-flurodeoxyglucose positron emission tomography was used to trace cerebral glucose metabolism in vivo, along with Western blotting and immunofluorescence assays to examine the expression and distribution of associated proteins. Glucose and insulin tolerance tests were carried out to detect insulin resistance, and the Morris water maze was used to test the spatial learning and memory ability of the mice. The results show increased NLRP3 inflammasome activation, elevated insulin resistance, and decreased glucose metabolism in 3×Tg-AD mice. Inhibiting NLRP3 inflammasome activation using CY-09, a specific inhibitor for NLRP3, may restore cerebral glucose metabolism by increasing the expression and distribution of glucose transporters and enzymes and attenuating insulin resistance in AD mice. Moreover, CY-09 helps to improve AD pathology and relieve cognitive impairment in these mice. Although CY-09 has no significant effect on ferroptosis, it can effectively reduce fatty acid synthesis and lipid peroxidation. These findings provide new evidence for NLRP3 inflammasome as a therapeutic target for AD, suggesting that CY-09 may be a potential drug for the treatment of this disease.
RESUMO
The authors wish to make the following corrections to their published paper [...].
RESUMO
BACKGROUND: Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE: To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS: EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS: EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3ß activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3ß, and blocked autophagy. CONCLUSIONS: To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Proteínas tau/metabolismo , Fosforilação , Modelos Animais de Doenças , HipocampoRESUMO
Optical coherence tomography angiography (OCTA) can provide in vivo three-dimensional microvasculature information of bio-tissues, but it is sensitive to motion and time-consuming. To overcome these limitations, we propose an adaptive multiple time interval correlation mapping OCTA with a time-efficient scanning protocol and motion compensation algorithms. A spectral-domain OCT with a center wavelength of 850 nm, A-scan rate of 120 kHz and spatial resolution of 4.1 µm (axial) × 6.9 µm (lateral) is built to reconstruct the microvascular networks in the human arm. By adaptive optimization of the weights of different time interval B-scan angiograms, our novel OCTA technique achieves better performance with a visible vascular density increase of ~67% and a signal-to-noise ratio enhancement of ~11.6%.
Assuntos
Angiografia , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Angiografia/métodos , Razão Sinal-Ruído , Algoritmos , Movimento (Física)RESUMO
To clarify the influence of Si on cementite nucleation during the solidification of hypereutectoid steel, the types and microstructure of cementite in hypereutectoid steel with various Si concentrations were investigated by X-ray diffraction and scanning electron microscopy. Additionally, the interfacial properties of γ-Fe/Fe3C were studied using the first-principles density functional theory, including work on adhesion, interfacial energy, and electronic structure, with the aim of elucidating the impact mechanism of Si on the cementite nucleation. The results showed that increasing Si concentrations (0-0.42 wt.%) had a negligible effect on the types of cementite in as-cast hypereutectoid steel. However, the average number of cementite lamellae per unit area decreased significantly, indicating that an increase in Si concentrations has an inhibitory effect on cementite nucleation. This can be attributed to the effect of Si on the interfacial properties of γ-Fe (010)/Fe3C (010), where the presence of Si disrupts the charge distribution of the γ-Fe (010)/Fe3C (010) interface and decreases the hybridization of atom orbits on each side of the interface, resulting in a decrease in the interatomic interaction force. This is reflected in the decrease in the work of adhesion (from 6.92 J·m-2 to 6.78 J·m-2) and the increase in the interfacial energy (from -1.42 J·m-2 to -1.31 J·m-2). As a result, the stability of the γ-Fe (010)/Fe3C (010) interface is reduced, making it difficult for the composite structure to form. This indicates that Si doping inhibits cementite nucleation on austenite.