Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(11): 9637-9647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819499

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by hyperglycaemia. T2DM is a highly heterogeneous polygenic disease. Due to genetic variation, variations in lifestyle and other environmental exposures, there are certain variations in the phenotype of T2DM patients. Sodium glucose cotransporter 2 (SGLT2) inhibitors are novel hypoglycaemic agents that increase urinary glucose excretion by inhibiting glucose reabsorption in the proximal tubules of the kidney. For glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, studies have confirmed a variety of gene variants that may modify their effects. For SGLT2 inhibitors, research has focused on the SLC5A2 gene encoding SGLT2 and UGT1A9 gene polymorphisms affecting SGLT2 inhibitor metabolism. The SLC5A2 polymorphism rs9934336 have been associated with decreased HbA1c during the oral glucose tolerance test. Common variants of the SLC5A2 gene are related to blood glucose and insulin concentrations, but not glucagon concentrations. SLC5A2 rs9934336 and rs3116150 are related to a lower risk of heart failure. SGLT2 inhibitor exposure of UGT1A9*3 carriers is commonly higher than that of noncarriers, while these effects commonly have no obvious clinical significance on SGLT2 inhibitor pharmacokinetics. In terms of efficacy, general SLC5A2 variants show no significant effect on the response to the SGLT2 inhibitor empagliflozin. At present, research on the relationship between genetic polymorphisms and the efficacy of SGLT2 inhibitors is limited. The main purpose of this review is to elucidate the general effects of SGLT2 polymorphisms and the association between polymorphisms and the treatment response to SGLT2 inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Glucose , Polimorfismo Genético/genética
2.
Expert Rev Clin Pharmacol ; 15(9): 1107-1117, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36065506

RESUMO

INTRODUCTION: Metformin has been recognized as the first-choice drug for type 2 diabetes mellitus (T2DM). The potency of metformin in the treatment of type 2 diabetes has always been in the spotlight and shown significant individual differences. Based on previous studies, the efficacy of metformin is related to the single-nucleotide polymorphisms of transporter genes carried by patients, amongst which a variety of gene polymorphisms of transporter and target protein genes affect the effectiveness and adverse repercussion of metformin. AREAS COVERED: Here, we reviewed the current knowledge about gene polymorphisms impacting metformin efficacy based on transporter and drug target proteins. EXPERT OPINION: The reason for the difference in clinical drug potency of metformin can be attributed to the gene polymorphism of drug transporters and drug target proteins in the human body. Substantial evidence shows that genetic polymorphisms in transporters such as organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) affect the glucose-lowering effectiveness of metformin. However, optimization of individualized dosing regimens of metformin is necessary to clarify the role of several polymorphisms.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Proteínas de Membrana Transportadoras , Metformina/farmacologia , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Transportador 2 de Cátion Orgânico/uso terapêutico , Polimorfismo de Nucleotídeo Único
3.
Invest New Drugs ; 40(6): 1333-1341, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36074313

RESUMO

Classic Hodgkin lymphoma (cHL) accounts for more than 90% of HL in developed countries. Although the current combined modality therapy make it have a high cure rate, the prognosis for heavily pretreated patients with relapsed or refractory (R/R) cHL remains poor. A novel antibody-drug conjugate (ADC), named camidanlumab tesirine (ADCT-301, Cami), is currently being evaluated for its efficacy and safety in R/R cHL. The primary objective of this review is to examine the current pharmacological properties of camidanlumab tesirine as well as its clinical antitumor activity and safety. Camidanlumab tesirine comprises a human IgG1 anti-CD25 monoclonal antibody HuMax®-TAC, conjugated to a pyrrolobenzodiazepine dimer toxin. Once it bound to CD25-expressing cells, camidanlumab tesirine is internalized by cells and delivers SG3199, then SG3199 irreversibly binds to DNA and forms DNA interstrand crosslinks, ultimately leading to cell death. In the phase 1 study, patients with R/R cHL who received camidanlumab tesirine had an overall response rate (ORR) of 71% and a complete response rate (CRR) of 42%. Additionally, the recommended doses provided in R/R cHL were determined to be 30 and 45 µg/kg. The pivotal phase 2 trial showed significant antitumor activity of camidanlumab tesirine in heavily pretreated R/R cHL patients who failed brentuximab vedotin and programmed death-1 blockade: ORR was 70.1% and CRR was 33.3%, and the median duration of response was 13.7 months. Adverse events such as fatigue, maculopapular rash, and anemia were frequently observed following administration of camidanlumab tesirine. Moreover, camidanlumab tesirine may cause Guillain-Barré syndrome or polyradiculopathy.


Assuntos
Antineoplásicos , Doença de Hodgkin , Imunoconjugados , Humanos , Antineoplásicos/efeitos adversos , Brentuximab Vedotin , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/induzido quimicamente , Doença de Hodgkin/patologia , Imunoconjugados/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Ensaios Clínicos Fase II como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA