Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(1): 49-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38156943

RESUMO

Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.


Assuntos
Hipertensão , Síndromes da Apneia do Sono , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Átrios do Coração/metabolismo , Hipóxia
2.
J Comp Neurol ; 531(16): 1608-1632, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694767

RESUMO

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g., substance P [SP] and calcitonin gene-related peptide [CGRP]). We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: (1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. (2) CGRP-IR axons densely innervated the blood vessels. (3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. (4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. (5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. (6) CGRP-IR axons did not colocalize with tyrosine hydroxylase or vesicular acetylcholine transporter axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. (7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Estômago , Animais , Camundongos , Axônios , Neurônios , Fibras Nervosas
3.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398245

RESUMO

Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.

4.
Sci Rep ; 13(1): 4850, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029119

RESUMO

The sympathetic nervous system is crucial for controlling multiple cardiac functions. However, a comprehensive, detailed neuroanatomical map of the sympathetic innervation of the heart is unavailable. Here, we used a combination of state-of-the-art techniques, including flat-mount tissue processing, immunohistochemistry for tyrosine hydroxylase (TH, a sympathetic marker), confocal microscopy and Neurolucida 360 software to trace, digitize, and quantitatively map the topographical distribution of the sympathetic postganglionic innervation in whole atria of C57Bl/6 J mice. We found that (1) 4-5 major extrinsic TH-IR nerve bundles entered the atria at the superior vena cava, right atrium (RA), left precaval vein and the root of the pulmonary veins (PVs) in the left atrium (LA). Although these bundles projected to different areas of the atria, their projection fields partially overlapped. (2) TH-IR axon and terminal density varied considerably between different sites of the atria with the greatest density of innervation near the sinoatrial node region (P < 0.05, n = 6). (3) TH-IR axons also innervated blood vessels and adipocytes. (4) Many principal neurons in intrinsic cardiac ganglia and small intensely fluorescent cells were also strongly TH-IR. Our work provides a comprehensive topographical map of the catecholaminergic efferent axon morphology, innervation, and distribution in the whole atria at single cell/axon/varicosity scale that may be used in future studies to create a cardiac sympathetic-brain atlas.


Assuntos
Átrios do Coração , Veia Cava Superior , Camundongos , Animais , Axônios , Neurônios , Imuno-Histoquímica , Tirosina 3-Mono-Oxigenase
5.
Front Neuroinform ; 16: 819198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090663

RESUMO

The stimulating peripheral activity to relieve conditions (SPARC) program is a US National Institutes of Health-funded effort to improve our understanding of the neural circuitry of the autonomic nervous system (ANS) in support of bioelectronic medicine. As part of this effort, the SPARC project is generating multi-species, multimodal data, models, simulations, and anatomical maps supported by a comprehensive knowledge base of autonomic circuitry. To facilitate the organization of and integration across multi-faceted SPARC data and models, SPARC is implementing the findable, accessible, interoperable, and reusable (FAIR) data principles to ensure that all SPARC products are findable, accessible, interoperable, and reusable. We are therefore annotating and describing all products with a common FAIR vocabulary. The SPARC Vocabulary is built from a set of community ontologies covering major domains relevant to SPARC, including anatomy, physiology, experimental techniques, and molecules. The SPARC Vocabulary is incorporated into tools researchers use to segment and annotate their data, facilitating the application of these ontologies for annotation of research data. However, since investigators perform deep annotations on experimental data, not all terms and relationships are available in community ontologies. We therefore implemented a term management and vocabulary extension pipeline where SPARC researchers may extend the SPARC Vocabulary using InterLex, an online vocabulary management system. To ensure the quality of contributed terms, we have set up a curated term request and review pipeline specifically for anatomical terms involving expert review. Accepted terms are added to the SPARC Vocabulary and, when appropriate, contributed back to community ontologies to enhance ANS coverage. Here, we provide an overview of the SPARC Vocabulary, the infrastructure and process for implementing the term management and review pipeline. In an analysis of >300 anatomical contributed terms, the majority represented composite terms that necessitated combining terms within and across existing ontologies. Although these terms are not good candidates for community ontologies, they can be linked to structures contained within these ontologies. We conclude that the term request pipeline serves as a useful adjunct to community ontologies for annotating experimental data and increases the FAIRness of SPARC data.

6.
iScience ; 24(7): 102795, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355144

RESUMO

We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering. The pattern, distribution, and clustering of ICNS neurons across all male and female rat hearts is highly conserved, demonstrating a coherent organizational plan where distinct clusters of neurons are consistently localized. Female hearts had fewer neurons, lower packing density, and slightly reduced distribution, but with identical localization. We registered the anatomical data from each heart to a geometric scaffold, normalizing their 3D coordinates for standardization of common anatomical planes and providing a path where multiple experimental results and data types can be integrated and compared.

7.
Front Physiol ; 12: 693735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248680

RESUMO

The Data and Resource Center (DRC) of the NIH-funded SPARC program is developing databases, connectivity maps, and simulation tools for the mammalian autonomic nervous system. The experimental data and mathematical models supplied to the DRC by the SPARC consortium are curated, annotated and semantically linked via a single knowledgebase. A data portal has been developed that allows discovery of data and models both via semantic search and via an interface that includes Google Map-like 2D flatmaps for displaying connectivity, and 3D anatomical organ scaffolds that provide a common coordinate framework for cross-species comparisons. We discuss examples that illustrate the data pipeline, which includes data upload, curation, segmentation (for image data), registration against the flatmaps and scaffolds, and finally display via the web portal, including the link to freely available online computational facilities that will enable neuromodulation hypotheses to be investigated by the autonomic neuroscience community and device manufacturers.

8.
iScience ; 23(6): 101140, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460006

RESUMO

We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale. We now display the full extent and the position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The development of these approaches needed for this work has produced method pipelines that provide the means for mapping other organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA