Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(22): 225001, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101377

RESUMO

We demonstrate both experimentally and using a numerical simulation that, under special conditions, the repulsive Coulomb interaction helps to suppress the emittance growth of an rf-driven bunch of ions in an electrostatic ion beam trap. The underlying mechanisms can be explained by the synchronization of ion motion when nonlinear interactions are present. The surprising effect can help in improving the phase space manipulation of ions and the beam control in storage rings and accelerators and may be applied to other systems with many-body interactions in a periodic potential.

2.
Phys Chem Chem Phys ; 25(37): 25701-25710, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721452

RESUMO

Simultaneous trapping of merged cation and anion beams in the hybrid electrostatic ion beam trap (HEIBT) opens new opportunities for the study of the interactions of isolated atomic molecular or cluster ions with oppositely charged ionic species. Application of the trapped merged beams requires a detailed understanding of the trapping dynamics and the effect of the Coulombic attractive and repulsive forces between the ions on their motion in the trap. The simultaneous trapping regime is explored experimentally for SF6- anion and SF5+ cation beams and compared to realistic ion trajectory simulations. The respective stability of the simultaneously trapped cation and anion beams is experimentally tracked by nondestructive and mass sensitive image charge monitoring. An approximate analytical potential model is presented for modeling the dynamics of trapped ions, providing insight into the role of ion-ion interactions, and suggesting a simplified mirror design.

3.
Phys Rev E ; 107(4-2): 045202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198764

RESUMO

The dynamics of ions in an electrostatic ion beam trap in the presence of an external time-dependent field is studied with a recently developed particle-in-cell simulation technique. The simulation technique, capable of accounting for space-charge effects, has reproduced all the experimental results on the bunch dynamics in the radio frequency mode. With simulation, the motion of ions is visualized in phase space and it is shown that the ion-ion interaction strongly affects the distribution of ions in phase space in the presence of an rf driving voltage.

4.
Sci Rep ; 12(1): 22518, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581645

RESUMO

The radiative cooling of a stored, initially rotationally hot OH[Formula: see text] ion beam is probed by photodetachment using an electrostatic ion beam trap combined with an in-trap velocity map imaging spectrometer, providing direct measurement of the time-dependent rotational population. The rotational temperatures are estimated from photodetached electron spectra as a function of time using a Boltzmann distribution model and further verified by a rate law model using known Einstein coefficients. We demonstrate that during the entire cooling time, the rotational population can be well described by a Boltzmann distribution.

5.
Phys Rev E ; 104(6-2): 065202, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030919

RESUMO

We developed a simulation technique to study the effect of space charge interaction between trapped ions in the electrostatic ion beam trap (EIBT). The importance of space charge is demonstrated in both the dispersive and the self-bunching regime of the ion trap. The simulation results provide an estimate for the space charge effect on the trapping efficiency. They also allow for a better understanding of the enhanced diffusion and the self-bunching effect and provide a better characterization of the EIBT as a mass spectrometer, where peak coalescence is important. The numerical results reproduce all experimental data, demonstrating the critical importance of including space charge effects, even at low ion density, to understand the ion trap dynamics.

6.
Nat Commun ; 11(1): 999, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081896

RESUMO

Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have become key to understanding and controlling interactions-in ultracold atomic gases, but also between quasiparticles, such as microcavity polaritons. Their energy positions were shown to follow quantum chaotic statistics. In contrast, their lifetimes have so far escaped a similarly comprehensive understanding. Here, we show that bound states, despite being resonantly coupled to a scattering state, become protected from decay whenever the relative phase is a multiple of π. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.

7.
Rev Sci Instrum ; 90(11): 113308, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779381

RESUMO

Using dichroic electrostatic mirrors, which can reflect a fast ion beam while transmitting a counterion beam, allows extending the field of electrostatic ion trapping. We present the design and simulations of a hybrid electrostatic ion beam trap that allows simultaneous trapping of velocity matched cation and anion beams. The possible merged beam ion-ion, ion-neutral, and ion-laser experiments are discussed.

8.
Phys Rev Lett ; 116(14): 143004, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104704

RESUMO

We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H_{2}^{+}. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed two-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state and the cone apex. These findings are supported by numerical solutions of the time-dependent Schrödinger equation for similar experimental conditions.

9.
J Phys Chem A ; 120(2): 221-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26667587

RESUMO

Photodetachment cross sections as a function of photon energy are measured for cold (SF6)n(-) cluster anions stored in an electrostatic ion beam trap. Absolute photodetachment cross sections near the adiabatic limit are reported. The strong dependence of the SF6(-) absolute photodetachment cross section on the anion equilibrium bond length leads to the conclusion that the excess charge is localized on a SF6(-) ion core that is only subtly perturbed by the neighboring cluster units.

10.
Chemistry ; 20(19): 5555-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24604877

RESUMO

The absolute configuration of (R,R)-2,3-dideuterooxirane, which has been independently determined using Coulomb explosion imaging, has been unambiguously chemically correlated with the stereochemical key reference (+)-glyceraldehyde. This puts the absolute configuration of D(+)-glyceraldehyde on firm experimental grounds.

12.
Science ; 342(6162): 1084-6, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24288330

RESUMO

In chemistry and biology, chirality, or handedness, refers to molecules that exist in two spatial configurations that are incongruent mirror images of one another. Almost all biologically active molecules are chiral, and the correct determination of their absolute configuration is essential for the understanding and the development of processes involving chiral molecules. Anomalous x-ray diffraction and vibrational optical activity measurements are broadly used to determine absolute configurations of solid or liquid samples. Determining absolute configurations of chiral molecules in the gas phase is still a formidable challenge. Here we demonstrate the determination of the absolute configuration of isotopically labeled (R,R)-2,3-dideuterooxirane by foil-induced Coulomb explosion imaging of individual molecules. Our technique provides unambiguous and direct access to the absolute configuration of small gas-phase species, including ions and molecular fragments.


Assuntos
Óxido de Etileno/química , Imagem Molecular/métodos , Deutério , Fenômenos Eletromagnéticos , Gases , Marcação por Isótopo , Conformação Molecular , Estereoisomerismo
13.
Rev Sci Instrum ; 83(3): 033302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462914

RESUMO

A technique for mass-selective lifetime measurements of keV ions in a linear electrostatic ion beam trap is presented. The technique is based on bunching the ions using a weak RF potential and non-destructive ion detection by a pick-up electrode. This method has no mass-limitation, possesses the advantage of inherent mass-selectivity, and offers a possibility of measuring simultaneously the lifetimes of different ion species with no need for prior mass-selection.

14.
J Phys Chem A ; 114(14): 4870-4, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20073483

RESUMO

We report on our recent studies of dissociative recombination (DR) employing two different fragment imaging detection techniques at the TSR storage ring in Heidelberg, Germany. Principles of an upgraded 3D optical system and the new energy-sensitive multistrip detector (EMU) are explained together with possible applications in reaction dynamics studies. With the EMU imaging detector we succeeded to observe the branching ratios after DR of deuterated hydronium ions D(3)O(+) at energies of 0-0.5 and 4-21 eV. The branching ratios are almost constant at low energies while above 6 eV both oxygen-producing channels O + D + D + D and O + D(2) + D strongly increase and dominate by about 85% at 11 eV. To demonstrate further capabilities of our fragment imaging detectors, we also summarize some of our additional recent studies on DR of molecular ions important for astrophysics as well as for fundamental unimolecular dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA