Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1190, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996482

RESUMO

Brain tissue is metabolically expensive. Consequently, the evolution of humans' large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans'. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define "external fermentation" as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.


Assuntos
Hominidae , Animais , Humanos , Fermentação , Dieta , Encéfalo , Colo
2.
Animals (Basel) ; 13(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508162

RESUMO

Facial phenotypes are significant in communication with conspecifics among social primates. Less is understood about the impact of such markers in heterospecific encounters. Through behavioral and physical phenotype analyses of domesticated dogs living in human households, this study aims to evaluate the potential impact of superficial facial markings on dogs' production of human-directed facial expressions. That is, this study explores how facial markings, such as eyebrows, patches, and widow's peaks, are related to expressivity toward humans. We used the Dog Facial Action Coding System (DogFACS) as an objective measure of expressivity, and we developed an original schematic for a standardized coding of facial patterns and coloration on a sample of more than 100 male and female dogs (N = 103), aged from 6 months to 12 years, representing eight breed groups. The present study found a statistically significant, though weak, correlation between expression rate and facial complexity, with dogs with plainer faces tending to be more expressive (r = -0.326, p ≤ 0.001). Interestingly, for adult dogs, human companions characterized dogs' rates of facial expressivity with more accuracy for dogs with plainer faces. Especially relevant to interspecies communication and cooperation, within-subject analyses revealed that dogs' muscle movements were distributed more evenly across their facial regions in a highly social test condition compared to conditions in which they received ambiguous cues from their owners. On the whole, this study provides an original evaluation of how facial features may impact communication in human-dog interactions.

3.
Brain Struct Funct ; 228(7): 1657-1669, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436502

RESUMO

The brains of humans and non-human primates exhibit left/right asymmetries in grey matter morphology, white matter connections, and functional responses. These asymmetries have been implicated in specialized behavioral adaptations such as language, tool use, and handedness. Left/right asymmetries are also observed in behavioral tendencies across the animal kingdom, suggesting a deep evolutionary origin for the neural mechanisms underlying lateralized behavior. However, it is still unclear to what extent brain asymmetries supporting lateralized behaviors are present in other large-brained animals outside the primate order. Canids and other carnivorans evolved large, complex brains independently and convergently with primates, and exhibit lateralized behaviors. Therefore, domestic dogs offer an opportunity to address this question. We examined T2-weighted MRI images of 62 dogs from 33 breeds, opportunistically collected from a veterinary MRI scanner from dogs who were referred for neurological examination but were not found to show any neuropathology. Volumetrically asymmetric regions of gray matter included portions of the temporal and frontal cortex, in addition to portions of the cerebellum, brainstem, and other subcortical regions. These results are consistent with the perspective that asymmetry may be a common feature underlying the evolution of complex brains and behavior across clades, and provide neuro-organizational information that is likely relevant to the growing field of canine behavioral neuroscience.


Assuntos
Encéfalo , Substância Cinzenta , Cães , Animais , Encéfalo/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Córtex Cerebral , Mapeamento Encefálico , Primatas , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia
4.
Brain Struct Funct ; 228(5): 1177-1189, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37160458

RESUMO

Although the silver fox (Vulpes vulpes) has been largely overlooked by neuroscientists, it has the potential to serve as a powerful model for the investigation of brain-behavior relationships. The silver fox is a melanistic variant of the red fox. Within this species, the long-running Russian farm-fox experiment has resulted in different strains bred to show divergent behavior. Strains bred for tameness, aggression, or without selection on behavior present an excellent opportunity to investigate neuroanatomical changes underlying behavioral characteristics. Here, we present a histological and MRI neuroanatomical reference of a fox from the conventional strain, which is bred without behavioral selection. This can provide an anatomical basis for future studies of the brains of foxes from this particular experiment, as well as contribute to an understanding of fox brains in general. In addition, this can serve as a resource for comparative neuroscience and investigations into neuroanatomical variation among the family Canidae, the order Carnivora, and mammals more broadly.


Assuntos
Agressão , Raposas , Animais , Encéfalo
5.
J Comp Neurol ; 531(11): 1096-1107, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37127839

RESUMO

Nonhuman primates exhibit sexual dimorphism in behavior, suggesting that there could be underlying differences in brain organization and function. Understanding this neuroanatomical variation is critical for enhancing our understanding of the evolution of sex differences in the human brain. Tufted capuchin monkeys (Sapajus [Cebus] apella) represent a phylogenetically diverse taxa of neotropical primates that converge on several behavioral characteristics with humans relevant to social organization, making them an important point of comparison for studying the evolution of sex differences in primates. While anatomical sex differences in gray matter have previously been found in capuchin monkeys, the current study investigates sex differences in white matter tracts. We carried out tract-based spatial statistical analysis on fractional anisotropy images of tufted capuchin monkeys (15 female, 5 male). We found that females showed significantly higher fractional anisotropy than males in regions of frontal-parietal white matter in the right cerebral hemisphere. Paralleling earlier findings in gray matter, male and female fractional anisotropy values in these regions were nonoverlapping. This complements prior work pointing toward capuchin sex differences in limbic circuitry and higher-order visual regions. We propose that these sex differences are related to the distinct socioecological niches occupied by male and female capuchins. Capuchin neuroanatomical sex differences appear to be more pronounced than in humans, which we suggest may relate to human adaptations for prolonged neurodevelopmental trajectories and increased plasticity.


Assuntos
Caracteres Sexuais , Substância Branca , Animais , Humanos , Feminino , Masculino , Substância Branca/diagnóstico por imagem , Sapajus apella , Encéfalo/diagnóstico por imagem , Cebus
6.
Trends Cogn Sci ; 27(6): 553-567, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087363

RESUMO

How does domestication affect the brain? This question has broad relevance. Domesticated animals play important roles in human society, and substantial recent work has addressed the hypotheses that a domestication syndrome links phenotypes across species, including Homo sapiens. Surprisingly, however, neuroscience research on domestication remains largely disconnected from current knowledge about how and why brains change in evolution. This article aims to bridge that gap. Examination of recent research reveals some commonalities across species, but ultimately suggests that brain changes associated with domestication are complex and variable. We conclude that interactions between behavioral, metabolic, and life-history selection pressures, as well as the role the role of experience and environment, are currently largely overlooked and represent important directions for future research.


Assuntos
Encéfalo , Domesticação , Animais , Humanos
7.
J Neurosci ; 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127519

RESUMO

The Russian fox-farm experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness vs. aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphological covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENTDomestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian fox-farm experiment. Compared to a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the prefrontal cortex and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly - within the span of less than a hundred generations.

8.
J Comp Neurol ; 529(2): 327-339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32410227

RESUMO

This study reports an analysis of 20 T1-weighted magnetic resonance imaging scans from tufted capuchin monkeys (5 male, 15 female). We carried out a data-driven, whole-brain volumetric analysis on regional gray matter anatomy using voxel-based morphometry. This revealed that males showed statistically significant expansion of a region of the hypothalamus, while females showed significant expansion in a distributed set of regions, including the cerebellum, early visual cortex, and higher-order visual regions spanning occipital and temporal cortex. In order to elucidate the network connectivity of these regions, we employed probabilistic tractography on diffusion tensor imaging data. This showed that the female-enlarged regions connect with distributed association networks across the brain. Notably, this contrasts with rodent studies, where sex differences are focused in deep, ancestral limbic regions involved in the control of reproductive behavior. Additionally, in our data set, for several regions, male and female volumetric measures were completely nonoverlapping. This contrasts with human studies, where sex differences in cortical regions have been reported but are characterized by overlapping rather than divergent male and female values. We suggest that these results can be understood in the context of the different lifetime experiences of males and females, which may produce increased experience-dependent cortical plasticity in capuchins compared to rodents, and in humans compared to capuchins.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Sapajus apella/anatomia & histologia , Caracteres Sexuais , Animais , Cebus , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Sapajus
9.
Neuroimage ; 228: 117685, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359344

RESUMO

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Assuntos
Anatomia Comparada/tendências , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Neuroimagem/tendências , Anatomia Comparada/métodos , Animais , Humanos , Neuroimagem/métodos , Primatas
10.
Genes Brain Behav ; 19(1): e12614, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605445

RESUMO

The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.


Assuntos
Agressão , Raposas/genética , Hipotálamo/metabolismo , Transcriptoma , Animais , Raposas/fisiologia , Redes Reguladoras de Genes
11.
Brain Cogn ; 138: 105507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31855701

RESUMO

The Dynamic Interacting Shape Clips (DISC) is a novel stimulus set designed to examine mentalizing, specifically social attribution, suitable for use with diverse methodologies including fMRI. The DISC offer some advantages compared to other social attribution stimuli including a large number of stimuli, subsets of stimuli depicting different kinds of social interactions (i.e., friendly approach, aggression, and avoidance), and two control tasks-one that contrasts interpretations of socially contingent movement versus random, inanimate movement, and the other that examines the impact of attentional shifts on mentalizing using the same visual stimuli with a different cue. This study describes both behavioral and fMRI findings from a sample of 22 typically developing adults (mage = 21.7 years, SD = 1.72). Behavioral data supports participants anthropomorphized the stimuli and the social intent of the clips were perceived as intended. Neuroimaging findings demonstrate that brain areas associated with processing animacy and mental state attribution were activated when participants were shown clips featuring social interactions compared to random movement, and when attention was cued to social versus physical aspects of the same stimuli. Results lend empirical support for the use of the DISC in future studies of social cognition.


Assuntos
Mapeamento Encefálico , Mentalização/fisiologia , Percepção Social , Teoria da Mente/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
12.
J Neurosci ; 39(39): 7748-7758, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31477568

RESUMO

Humans have bred different lineages of domestic dogs for different tasks such as hunting, herding, guarding, or companionship. These behavioral differences must be the result of underlying neural differences, but surprisingly, this topic has gone largely unexplored. The current study examined whether and how selective breeding by humans has altered the gross organization of the brain in dogs. We assessed regional volumetric variation in MRI studies of 62 male and female dogs of 33 breeds. Neuroanatomical variation is plainly visible across breeds. This variation is distributed nonrandomly across the brain. A whole-brain, data-driven independent components analysis established that specific regional subnetworks covary significantly with each other. Variation in these networks is not simply the result of variation in total brain size, total body size, or skull shape. Furthermore, the anatomy of these networks correlates significantly with different behavioral specialization(s) such as sight hunting, scent hunting, guarding, and companionship. Importantly, a phylogenetic analysis revealed that most change has occurred in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. Together, these results establish that brain anatomy varies significantly in dogs, likely due to human-applied selection for behavior.SIGNIFICANCE STATEMENT Dog breeds are known to vary in cognition, temperament, and behavior, but the neural origins of this variation are unknown. In an MRI-based analysis, we found that brain anatomy covaries significantly with behavioral specializations such as sight hunting, scent hunting, guarding, and companionship. Neuroanatomical variation is not simply driven by brain size, body size, or skull shape, and is focused in specific networks of regions. Nearly all of the identified variation occurs in the terminal branches of the dog phylogenetic tree, indicating strong, recent selection in individual breeds. These results indicate that through selective breeding, humans have significantly altered the brains of different lineages of domestic dogs in different ways.


Assuntos
Encéfalo/anatomia & histologia , Cães/fisiologia , Sistema Nervoso/anatomia & histologia , Animais , Comportamento Animal , Tamanho Corporal , Encéfalo/diagnóstico por imagem , Cruzamento , Feminino , Variação Genética , Vínculo Humano-Animal , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Sistema Nervoso/diagnóstico por imagem , Tamanho do Órgão , Filogenia , Comportamento Predatório , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Olfato/fisiologia , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 114(30): 7861-7868, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28739892

RESUMO

Culture suffuses all aspects of human life. It shapes our minds and bodies and has provided a cumulative inheritance of knowledge, skills, institutions, and artifacts that allows us to truly stand on the shoulders of giants. No other species approaches the extent, diversity, and complexity of human culture, but we remain unsure how this came to be. The very uniqueness of human culture is both a puzzle and a problem. It is puzzling as to why more species have not adopted this manifestly beneficial strategy and problematic because the comparative methods of evolutionary biology are ill suited to explain unique events. Here, we develop a more particularistic and mechanistic evolutionary neuroscience approach to cumulative culture, taking into account experimental, developmental, comparative, and archaeological evidence. This approach reconciles currently competing accounts of the origins of human culture and develops the concept of a uniquely human technological niche rooted in a shared primate heritage of visuomotor coordination and dexterous manipulation.

14.
Neuroimage ; 147: 314-329, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989775

RESUMO

Most intranasal oxytocin research to date has been carried out in men, but recent studies indicate that females' responses can differ substantially from males'. This randomized, double-blind, placebo-controlled study involved an all-female sample of 28 women not using hormonal contraception. Participants viewed animations of geometric shapes depicting either random movement or social interactions such as playing, chasing, or fighting. Probe questions asked whether any shapes were "friends" or "not friends." Social videos were preceded by cues to attend to either social relationships or physical size changes. All subjects received intranasal placebo spray at scan 1. While the experimenter was not blinded to nasal spray contents at Scan 1, the participants were. Scan 2 followed a randomized, double-blind design. At scan 2, half received a second placebo dose while the other half received 24 IU of intranasal oxytocin. We measured neural responses to these animations at baseline, as well as the change in neural activity induced by oxytocin. Oxytocin reduced activation in early visual cortex and dorsal-stream motion processing regions for the social > size contrast, indicating reduced activity related to social attention. Oxytocin also reduced endorsements that shapes were "friends" or "not friends," and this significantly correlated with reduction in neural activation. Furthermore, participants who perceived fewer social relationships at baseline were more likely to show oxytocin-induced increases in a broad network of regions involved in social perception and social cognition, suggesting that lower social processing at baseline may predict more positive neural responses to oxytocin.


Assuntos
Encéfalo , Neuroimagem Funcional/métodos , Neurotransmissores/farmacologia , Ocitocina/farmacologia , Percepção Social , Percepção Visual/fisiologia , Administração Intranasal , Adulto , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Neurotransmissores/administração & dosagem , Ocitocina/administração & dosagem , Córtex Visual/diagnóstico por imagem , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiologia , Adulto Jovem
15.
Exp Brain Res ; 235(1): 259-267, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699442

RESUMO

Whereas a number of studies have examined relationships among brain activity, social cognitive skills, and autistic traits, fewer studies have evaluated whether structural connections among brain regions relate to these traits and skills. Uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF) are white matter tracts that may underpin the behavioral expression of these skills because they connect regions within or provide sensory information to brain areas implicated in social cognition, and structural differences in these tracts have been associated with autistic traits. We examined relationships among self-reported autistic traits, mentalizing, and water diffusivity in UF and ILF in a nonclinical sample of 24 young adults (mean age = 21.92 years, SD = 4.72 years; 15 women). We measured autistic traits using the Autism-Spectrum Quotient, and we measured mentalizing using the Dynamic Interactive Shapes Clips task. We used Tract-Based Spatial Statistics and randomize to examine relationships among fractional anisotropy (FA) values in bilateral ILF and UF, age, cognitive abilities, autistic traits, and mentalizing. Autistic traits were positively related to FA values in left ILF. No other relationships between FA values and other variables were significant. Results suggest that left ILF may be involved in the expression of autistic traits in individuals without clinical diagnoses.


Assuntos
Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/patologia , Fibras Nervosas Mielinizadas/patologia , Teoria da Mente , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Anisotropia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Testes Neuropsicológicos , Caracteres Sexuais , Estatística como Assunto , Adulto Jovem
16.
Am J Phys Anthropol ; 156(2): 252-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25360547

RESUMO

Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus.


Assuntos
Encéfalo , Ecossistema , Gorilla gorilla , Animais , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Feminino , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão/fisiologia
17.
Neuroimage ; 105: 53-66, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25450110

RESUMO

Understanding the function and connectivity of thalamic nuclei is critical for understanding normal and pathological brain function. The medial geniculate nucleus (MGN) has been studied mostly in the context of auditory processing and its connection to the auditory cortex. However, there is a growing body of evidence that the MGN and surrounding associated areas ('MGN/S') have a diversity of projections including those to the globus pallidus, caudate/putamen, amygdala, hypothalamus, and thalamus. Concomitantly, pathways projecting to the medial geniculate include not only the inferior colliculus but also the auditory cortex, insula, cerebellum, and globus pallidus. Here we expand our understanding of the connectivity of the MGN/S by using comparative diffusion weighted imaging with probabilistic tractography in both human and mouse brains (most previous work was in rats). In doing so, we provide the first report that attempts to match probabilistic tractography results between human and mice. Additionally, we provide anterograde tracing results for the mouse brain, which corroborate the probabilistic tractography findings. Overall, the study provides evidence for the homology of MGN/S patterns of connectivity across species for understanding translational approaches to thalamic connectivity and function. Further, it points to the utility of DTI in both human studies and small animal modeling, and it suggests potential roles of these connections in human cognition, behavior, and disease.


Assuntos
Corpos Geniculados/citologia , Vias Neurais/citologia , Adulto , Animais , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
18.
Neuroimage ; 108: 124-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534109

RESUMO

Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture.


Assuntos
Evolução Biológica , Lobo Frontal/anatomia & histologia , Pan troglodytes/anatomia & histologia , Lobo Parietal/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Dissecação/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/anatomia & histologia
19.
Brain Behav Evol ; 83(1): 1-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603302

RESUMO

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Assuntos
Evolução Biológica , Mapeamento Encefálico , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Anatomia Comparada , Animais , Humanos , Especificidade da Espécie
20.
J Comp Neurol ; 522(7): 1445-53, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24596113

RESUMO

Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system 'maps' comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of 'reference species' to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Animais , Mapeamento Encefálico/normas , Evolução Química , Expressão Gênica/fisiologia , Humanos , Disseminação de Informação/métodos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA