Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Pediatr Cardiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861174

RESUMO

Hydraulic force aids diastolic filling of the left ventricle (LV) by facilitating basal movement of the atrioventricular plane. The short-axis atrioventricular area difference (AVAD) determines direction and magnitude of this force. Patients with atrial septal defect (ASD) have reduced LV filling due to the left-to-right shunt across the atrial septum and thus potentially altered hydraulic force. The aims were therefore to use cardiac magnetic resonance images to assess whether AVAD and thus the hydraulic force differ in children with ASD compared to healthy children, and if it improves after ASD closure. Twenty-two children with ASD underwent cardiac magnetic resonance before ASD closure. Of these 22 children, 17 of them repeated their examination also after ASD closure. Twelve controls were included. Left atrial and ventricular areas were delineated in short-axis images, and AVAD was defined as the largest ventricular area minus the largest atrial area at each time frame and normalized to body height (AVADi). At end diastole AVADi was positive in all participants, suggesting a force acting towards the atrium assisting the diastolic movement of the atrioventricular plane; however, lower in children both before (6.3 cm2/m [5.2-8.0]; p < 0.0001) and after ASD closure (8.7 cm2/m [6.6-8.5]; p = 0.0003) compared to controls (12.2 cm2/m [11.3-13.9]). Left ventricular diastolic function improves after ASD closure in children by means of improved hydraulic force assessed by AVAD. Although AVADi improved after ASD closure, it was still lower than in controls, indicating diastolic abnormality even after ASD closure. In patients where AVADi is low, ASD closure may help avoid diastolic function deterioration and improve outcome. This could likely be important also in patients with small shunt volumes, especially if they are younger, who currently do not undergo ASD closure. Changes in clinical routine may be considered pending larger outcome studies.

2.
Pediatr Radiol ; 54(7): 1187-1196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700554

RESUMO

BACKGROUND: Photon-counting computed tomography (PCCT) is a new clinical method that may show better diagnostic quality at lower radiation doses than conventional CT. OBJECTIVE: To investigate the diagnostic quality and radiation dose of paediatric cardiovascular PCCT for diagnosis of congenital heart defects at 70 kV and 90 kV. MATERIALS AND METHODS: This retrospective assessment included clinical non-gated paediatric PCCT examinations for assessment of congenital heart defects. Radiation doses were recorded, and overall and specific diagnostic quality (1-4) were scored by four paediatric radiologists. Agreement, differences, and trends were assessed by percent rater agreement, intraclass correlation, Mann-Whitney tests, and Jonckheere-Terpstra tests. RESULTS: Seventy children with congenital heart defects were examined at 70 kV (n = 35; age 2 days-16 years; 63% boys) or 90 kV (n = 35; age 2 days-17 years; 51% boys). All observers gave a median score of 4 (high diagnostic quality) for both 70 kV and 90 kV, with no difference in median values between tube voltages (all P > 0.06). Agreement for overall scores was 66-94% for 70 kV and 60-77% for 90 kV. Agreement for specific scores was 80-97% for 70 kV and 83-89% for 90 kV. Size-dependent dose estimate was 0.68 mGy (0.25-2.02 mGy) for 70 kV and 1.10 mGy (0.58-2.71 mGy; P < 0.001) for 90 kV. Effective dose was 0.30 mSv (0.15-0.82 mSv) for 70 kV and 0.39 mSv (0.22-1.51 mSv; P = 0.01) for 90 kV. CONCLUSION: Paediatric cardiovascular PCCT yields images for congenital heart defects of high diagnostic quality with low radiation dose at both 70 kV and 90 kV.


Assuntos
Cardiopatias Congênitas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Feminino , Masculino , Criança , Lactente , Pré-Escolar , Recém-Nascido , Adolescente , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Pediatr Cardiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806793

RESUMO

A hydraulic force aids diastolic filling of the left ventricle (LV) and is proportional to the difference in short-axis area between the left ventricle and atrium; the atrioventricular area difference (AVAD). Patients with repaired Tetralogy of Fallot (rToF) and pulmonary regurgitation (PR) have reduced LV filling which could lead to a negative AVAD and a hydraulic force impeding diastolic filling. The aim was to assess AVAD and to determine whether the hydraulic force aids or impedes diastolic filling in patients with rToF and PR, compared to controls. Twelve children with rToF (11.5 [9-13] years), 12 pediatric controls (10.5 [9-13] years), 12 adults with rToF (21.5 [19-27] years) and 12 adult controls (24 [21-29] years) were retrospectively included. Cine short-axis images were acquired using cardiac magnetic resonance imaging. Atrioventricular area difference was calculated as the largest left ventricular short-axis area minus the largest left atrial short-axis area at beginning of diastole and end diastole and indexed to height (AVADi). Children and adults with rToF and PR had higher AVADi (0.3 cm2/m [- 1.3 to 0.8] and - 0.6 [- 1.5 to - 0.2]) at beginning of diastole compared to controls (- 2.7 cm2/m [- 4.9 to - 1.7], p = 0.015) and - 3.3 cm2/m [- 3.8 to - 2.8], p = 0.017). At end diastole AVADi did not differ between patients and controls. Children and adults with rToF and pulmonary regurgitation have an atrioventricular area difference that do not differ from controls and thus a net hydraulic force that contributes to left ventricular diastolic filling, despite a small underfilled left ventricle due to pulmonary regurgitation.

4.
J Am Heart Assoc ; 13(11): e033672, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780152

RESUMO

BACKGROUND: The geometrical relationship between atrial and ventricular short-axis cross-sectional area determines the hydraulic forces acting on intracardiac blood. This is important for diastolic filling. In patients undergoing heart transplantation (HTx), the left atrium is often enlarged as a result of the standard surgical technique. We hypothesized that diastolic filling in HTx patients is affected by the surgery altering the geometrical relationship between atrium and ventricle. METHODS AND RESULTS: This retrospective, cross-sectional study included 25 HTx patients (median age, 52 [range, 25-70] years), 15 patients with heart failure with reduced ejection fraction (median age, 63 [range, 52-75] years), 15 patients with heart failure with preserved ejection fraction (median age, 74 [range, 56-82] years), and 15 healthy controls (median age, 64 [range, 58-67] years) who underwent cardiac magnetic resonance imaging. Left ventricular, atrial, and total heart volumes (THV) were obtained. Atrioventricular area difference at end diastole and end systole was calculated as the largest ventricular short-axis area minus the largest atrial short-axis area. Left atrial minimum volume normalized for THV (LAmin/THV) was larger in HTx patients (median, 0.13 [range, 0.07-0.19]) compared with controls (median, 0.05 [range, 0.03-0.08], P <0.001), whereas left ventricular volume normalized for THV (left ventricular end-diastolic volume/THV) was similar between HTx and controls (median, 0.19 [range, 0.12-0.24] and median, 0.22 [range, 0.20-0.25], respectively). At end diastole, when atrioventricular area difference reached its largest positive value in controls, 11 HTx patients (44%) had a negative atrioventricular area difference, indicating impaired diastolic filling. CONCLUSIONS: Diastolic filling is impaired in HTx patients due to an altered geometrical relationship between the left atrium and ventricle. When performing cardiac transplantation, a surgical technique that creates a smaller left atrium may improve diastolic filling by aiding hydraulic forces.


Assuntos
Diástole , Átrios do Coração , Insuficiência Cardíaca , Transplante de Coração , Ventrículos do Coração , Volume Sistólico , Função Ventricular Esquerda , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Estudos Retrospectivos , Idoso , Estudos Transversais , Adulto , Átrios do Coração/fisiopatologia , Átrios do Coração/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/etiologia , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda/fisiologia , Volume Sistólico/fisiologia , Função do Átrio Esquerdo/fisiologia , Idoso de 80 Anos ou mais
5.
Front Cardiovasc Med ; 10: 1285391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107261

RESUMO

Background: Severe left-sided cardiac obstructions are associated with high morbidity and mortality if not detected in time. The correct prenatal diagnosis of coarctation of the aorta (CoA) is difficult. Fetal cardiac magnetic resonance imaging (CMR) may improve the prenatal diagnosis of complex congenital heart defects. Flow measurements in the ascending aorta could aid in predicting postnatal CoA, but its accurate visualization is challenging. Objectives: To compare the flow in the descending aorta (DAo) and umbilical vein (UV) in fetuses with suspected left-sided cardiac obstructions with and without the need for postnatal intervention and healthy controls by fetal phase-contrast CMR flow. A second objective was to determine if adding fetal CMR to echocardiography (echo) improves the fetal CoA diagnosis. Methods: Prospective fetal CMR phase-contrast flow in the DAo and UV and echo studies were conducted between 2017 and 2022. Results: A total of 46 fetuses with suspected left-sided cardiac obstructions [11 hypoplastic left heart syndrome (HLHS), five critical aortic stenosis (cAS), and 30 CoA] and five controls were included. Neonatal interventions for left-sided cardiac obstructions (n = 23) or comfort care (n = 1 with HLHS) were pursued in all 16 fetuses with suspected HLHS or cAS and in eight (27%) fetuses with true CoA. DAo or UV flow was not different in fetuses with and without need of intervention. However, DAo and UV flows were lower in fetuses with either retrograde isthmic systolic flow [DAo flow 253 (72) vs. 261 (97) ml/kg/min, p = 0.035; UV flow 113 (75) vs. 161 (81) ml/kg/min, p = 0.04] or with suspected CoA and restrictive atrial septum [DAo flow 200 (71) vs. 268 (94) ml/kg/min, p = 0.04; UV flow 89 vs. 159 (76) ml/kg/min, p = 0.04] as well as in those without these changes. Adding fetal CMR to fetal echo predictors for postnatal CoA did not improve the diagnosis of CoA. Conclusion: Fetal CMR-derived DAo and UV flow measurements do not improve the prenatal diagnosis of left-sided cardiac obstructions, but they could be important in identifying fetuses with a more severe decrease in blood flow across the left side of the heart. The physiological explanation may be a markedly decreased left ventricular cardiac output with subsequent retrograde systolic isthmic flow and decreased total DAo flow.

6.
Sci Rep ; 13(1): 18206, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875552

RESUMO

In Fontan patients, a lung deprived of hepatic blood may develop pulmonary arterio-venous malformations (PAVMs) resulting in shunting, reduced pulmonary vascular resistance (PVR) and decreased oxygenation. To provide guidance for corrective invasive interventions, we aimed to non-invasively determine how the hepatic to pulmonary blood flow balance correlates with pulmonary flow, PVR, and with oxygen saturation. Magnetic resonance imaging (MRI) data from eighteen Fontan patients (eight females, age 3-14 years) was used to construct patient-specific computational fluid dynamics (CFD) models to calculate the hepatic to pulmonary blood flow. This was correlated with pulmonary vein flow, simulated PVR and oxygen saturation. Clinical applicability of the findings was demonstrated with an interventional patient case. The hepatic to pulmonary blood flow balance correlated with right/left pulmonary vein flow (R2 = 0.50), left/right simulated PVR (R2 = 0.47), and oxygen saturation at rest (R2 = 0.56). In the interventional patient, CFD predictions agreed with post-interventional MRI measurements and with regressions in the cohort. The balance of hepatic blood to the lungs has a continuous effect on PVR and oxygen saturation, even without PAVM diagnosis. MRI combined with CFD may help in planning of surgical and interventional designs affecting the hepatic to pulmonary blood flow balance in Fontan patients.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Feminino , Humanos , Pré-Escolar , Criança , Adolescente , Artéria Pulmonar , Hidrodinâmica , Pulmão , Circulação Pulmonar
7.
Pediatr Cardiol ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596421

RESUMO

Left ventricular shape alterations predict cardiovascular outcomes and have been observed in children born preterm and after fetal growth restriction (FGR). The aim was to investigate whether left ventricular shape is altered in adolescents born very preterm and if FGR has an additive effect. Adolescents born very preterm due to verified early-onset FGR and two control groups with birthweight appropriate for gestational age (AGA), born at similar gestational age and at term, respectively, underwent cardiac MRI. Principal component analysis was applied to find the modes of variation best explaining shape variability for end-diastole, end-systole, and for the combination of both, the latter indicative of function. Seventy adolescents were included (13-16 years; 49% males). Sphericity was increased for preterm FGR versus term AGA for end-diastole (36[0-60] vs - 42[- 82-8]; p = 0.01) and the combined analysis (27[- 23-94] vs - 51[- 119-11]; p = 0.01), as well as for preterm AGA versus term AGA for end-diastole (30[- 56-115] vs - 42[- 82-8]; p = 0.04), for end-systole (57[- 29-89] vs - 30[- 79-34]; p = 0.03), and the combined analysis (44[- 50-145] vs - 51[- 119-11]; p = 0.02). No group differences were observed for left ventricular mass or ejection fraction (all p ≥ 0.33). Sphericity was increased after very preterm birth and exacerbated by early-onset FGR, indicating an additive effect to that of very preterm birth on left ventricular remodeling. Increased sphericity may be a prognostic biomarker of future cardiovascular disease in this cohort that as of yet shows no signs of cardiac dysfunction using standard clinical measurements.

8.
Magn Reson Med ; 90(6): 2472-2485, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582228

RESUMO

PURPOSE: To ultimately make accurate and precise fetal noninvasive oxygen saturation (sO2 ) measurements by T2 -prepared bSSFP more widely available by systematically assessing error sources in order to potentially reduce perinatal mortality in cardiovascular malformations and fetal growth restriction. METHODS: T2 -prepared bSSFP data were acquired in phantoms; in flowing blood in adults in the superior sagittal sinus, ascending and descending aorta, and main pulmonary artery; and in the fetal descending aorta and umbilical vein. T2 was assessed in relation to T2 two- or three-parameter curve-fitting techniques, SSFP readout, refocusing time delay (τ), constant and pulsatile blood flow, and impact of T1 recovery. Further, fetal T2 and sO2 variability were quantified in the descending aorta and umbilical vein in healthy fetuses and fetuses with cardiovascular malformation (gestational weeks 32-38). RESULTS: In phantoms, three-parameter fitting was accurate irrespective of phase FOV (<4 ms; i.e., <2%), and T2 was overestimated (up to 23 ms/10%; p = 0.001) beyond ±30 Hz off-resonance. In the adult aorta, T2 was underestimated during higher blood flow velocities and pulsatility for τ = 16 ms (-41 ms/-17%; p = 0.008). In fetuses, two-parameter fitting overestimated T2 compared with three-parameter fitting (+33 ms/+18%; p = 0.03). T2 variability was 18 ms/15% in the fetal descending aorta and 28 ms/14% in the umbilical vein. The resulting estimated sO2 variability was ∼10% (15% of sO2 value) in the fetal descending aorta. CONCLUSIONS: Errors due to T2 -fitting techniques, off-resonance, flow velocity, and insufficient T1 recovery between image acquisitions could be mitigated by using three-parameter fitting with included saturation-prepared images approximating infinite T2 -preparation time, adequate shimming covering the fetus and placenta, and by modifying acquisition parameters. Variability in fetal blood T2 and sO2 , however, indicate that it is currently not feasible to use these methods for prediction of disease.


Assuntos
Sangue Fetal , Saturação de Oxigênio , Gravidez , Feminino , Adulto , Humanos , Feto/diagnóstico por imagem , Hemodinâmica/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Oxigênio
10.
J Magn Reson Imaging ; 57(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726779

RESUMO

BACKGROUND: Neonates with critical congenital heart disease require early intervention. Four-dimensional (4D) flow may facilitate surgical planning and improve outcome, but accuracy and precision in neonates are unknown. PURPOSE: To 1) validate two-dimensional (2D) and 4D flow MRI in a phantom and investigate the effect of spatial and temporal resolution; 2) investigate accuracy and precision of 4D flow and internal consistency of 2D and 4D flow in neonates; and 3) compare scan time of 4D flow to multiple 2D flows. STUDY TYPE: Phantom and prospective patients. POPULATION: A total of 17 neonates with surgically corrected aortic coarctation (age 18 days [IQR 11-20]) and a three-dimensional printed neonatal aorta phantom. FIELD STRENGTH/SEQUENCE: 1.5T, 2D flow and 4D flow. ASSESSMENT: In the phantom, 2D and 4D flow volumes (ascending and descending aorta, and aortic arch vessels) with different resolutions were compared to high-resolution reference 2D flow. In neonates, 4D flow was compared to 2D flow volumes at each vessel. Internal consistency was computed as the flow volume in the ascending aorta minus the sum of flow volumes in the aortic arch vessels and descending aorta, divided by ascending aortic flow. STATISTICAL TESTS: Bland-Altman plots, Pearson correlation coefficient (r), and Student's t-tests. RESULTS: In the phantom, 2D flow differed by 0.01 ± 0.02 liter/min with 1.5 mm spatial resolution and -0.01 ± 0.02 liter/min with 0.8 mm resolution; 4D flow differed by -0.05 ± 0.02 liter/min with 2.4 mm spatial and 42 msec temporal resolution, -0.01 ± 0.02 liter/min with 1.5 mm, 42 msec resolution and -0.01 ± 0.02 liter/min with 1.5 mm, 21 msec resolution. In patients, 4D flow and 2D flow differed by -0.06 ± 0.08 liter/min. Internal consistency in patients was -11% ± 17% for 2D flow and 5% ± 13% for 4D flow. Scan time was 17.1 minutes [IQR 15.5-18.5] for 2D flow and 6.2 minutes [IQR 5.3-6.9] for 4D flow, P < 0.0001. DATA CONCLUSION: Neonatal 4D flow MRI is time efficient and can be acquired with good internal consistency without contrast agents or general anesthesia, thus potentially expanding 4D flow use to the youngest and smallest patients. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Recém-Nascido , Humanos , Adolescente , Imageamento Tridimensional/métodos , Velocidade do Fluxo Sanguíneo , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Anestesia Geral , Reprodutibilidade dos Testes
11.
Magn Reson Med ; 89(2): 594-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36156292

RESUMO

PURPOSE: To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS: Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS: Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION: The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Suspensão da Respiração , Imagem Cinética por Ressonância Magnética/métodos
12.
Pediatr Res ; 93(7): 2019-2027, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36344695

RESUMO

BACKGROUND: Although preterm birth predisposes for cardiovascular disease, recent studies in children indicate normal blood pressure and arterial stiffness. This prospective cohort study therefore assessed blood pressure and arterial stiffness in adolescents born very preterm due to verified fetal growth restriction (FGR). METHODS: Adolescents (14 (13-17) years; 52% girls) born very preterm with FGR (preterm FGR; n = 24) and two control groups born with appropriate birth weight (AGA), one in similar gestation (preterm AGA; n = 27) and one at term (term AGA; n = 28) were included. 24-hour ambulatory blood pressure and aortic pulse wave velocity (PWV) and distensibility by magnetic resonance imaging were acquired. RESULTS: There were no group differences in prevalence of hypertension or in arterial stiffness (all p ≥ 0.1). In boys, diastolic and mean arterial blood pressures increased from term AGA to preterm AGA to preterm FGR with higher daytime and 24-hour mean arterial blood pressures in the preterm FGR as compared to the term AGA group. In girls, no group differences were observed (all p ≥ 0.1). CONCLUSIONS: Very preterm birth due to FGR is associated with higher, yet normal blood pressure in adolescent boys, suggesting an existing but limited impact of very preterm birth on cardiovascular risk in adolescence, enhanced by male sex and FGR. IMPACT: Very preterm birth due to fetal growth restriction was associated with higher, yet normal blood pressure in adolescent boys. In adolescence, very preterm birth due to fetal growth restriction was not associated with increased thoracic aortic stiffness. In adolescence, very preterm birth in itself showed an existing but limited effect on blood pressure and thoracic aortic stiffness. Male sex and fetal growth restriction enhanced the effect of preterm birth on blood pressure in adolescence. Male sex and fetal growth restriction should be considered as additional risk factors to that of preterm birth in cardiovascular risk stratification.


Assuntos
Hipertensão , Nascimento Prematuro , Criança , Feminino , Humanos , Recém-Nascido , Masculino , Adolescente , Pressão Sanguínea/fisiologia , Estudos Prospectivos , Monitorização Ambulatorial da Pressão Arterial , Análise de Onda de Pulso , Retardo do Crescimento Fetal , Desenvolvimento Fetal , Idade Gestacional
13.
Pediatr Nephrol ; 38(6): 1855-1866, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409369

RESUMO

BACKGROUND: Preterm birth and fetal growth restriction (FGR) are associated with structural and functional kidney changes, increasing long-term risk for chronic kidney disease and hypertension. However, recent studies in preterm children are conflicting, indicating structural changes but normal kidney function. This study therefore assessed kidney structure and function in a cohort of adolescents born very preterm with and without verified FGR. METHODS: Adolescents born very preterm with FGR and two groups with appropriate birthweight (AGA) were included; one matched for gestational week at birth and one born at term. Cortical and medullary kidney volumes and T1 and T2* mapping values were assessed by magnetic resonance imaging. Biochemical markers of kidney function and renin-angiotensin-aldosterone system (RAAS) activation were analyzed. RESULTS: Sixty-four adolescents were included (13-16 years; 48% girls). Very preterm birth with FGR showed smaller total (66 vs. 75 ml/m2; p = 0.01) and medullary volume (19 vs. 24 ml/m2; p < 0.0001) compared to term AGA. Corticomedullary volume ratio decreased from preterm FGR (2.4) to preterm AGA (2.2) to term AGA (1.9; p = 0.004). There were no differences in T1 or T2* values (all p ≥ 0.34) or in biochemical markers (all p ≥ 0.12) between groups. CONCLUSIONS: FGR with abnormal fetal blood flow followed by very preterm birth is associated with smaller total kidney and medullary kidney volumes, but not with markers of kidney dysfunction or RAAS activation in adolescence. Decreased total kidney and medullary volumes may still precede a long-term decrease in kidney function, and potentially be used as a prognostic marker. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Hipertensão , Nascimento Prematuro , Criança , Feminino , Recém-Nascido , Adolescente , Humanos , Masculino , Retardo do Crescimento Fetal/patologia , Peso ao Nascer , Rim/patologia , Idade Gestacional
14.
Pediatr Cardiol ; 44(6): 1311-1318, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36334112

RESUMO

Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by Hadlock's formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. Forty-two fetuses at 36 (29-39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 datasets for training and validation, and 22 for testing. Hadlock's formulas 1-4 with biometric parameters from MRI were compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland-Altman analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Hadlock's formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1-4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151-650) ml/min (indexed 162 (range 52-220) ml/min/kg), and descending aortic flow was 763 (range 481-1160) ml/min (indexed 276 (range 189-386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable analysis time. Hadlock 1-4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.


Assuntos
Aprendizado Profundo , Peso Fetal , Humanos , Imageamento por Ressonância Magnética , Feto/diagnóstico por imagem , Idade Gestacional
15.
Int J Cardiovasc Imaging ; 39(2): 401-409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36115891

RESUMO

Experimental data on pulmonary regurgitation has linked right ventricular longitudinal function to left ventricular filling pressure in animals with induced and treated pulmonary regurgitation but this relationship has not been investigated in patients with repaired Tetralogy of Fallot (rToF). The aim of this study was to determine if right ventricular longitudinal function assessed using cardiovascular magnetic resonance (CMR) is associated with left ventricular filling pressure in patients with rToF. A second objective of this study was to determine if direction of septal movement is related to right ventricular pressure load in rToF. Eighteen patients with rToF undergoing CMR and heart catheterization prior to pulmonary valve replacement were retrospectively included and catheter-based pressure measurements were compared with CMR-derived RV regional function. Left ventricular filling pressure was measured as precapillary wedge pressure (PCWP). Longitudinal contribution to RV stroke volume correlated with PCWP (r = 0.48; p = 0.046) but not with RV EF or pulmonary regurgitation. Neither RV longitudinal strain nor TAPSE showed correlation with PCWP. Longitudinal contribution to stroke volume was lower for the RV compared to the LV (49 vs 54%; p = 0.039). Direction of septal movement did not show a correlation with RV end-systolic pressure. Right ventricular longitudinal pumping is associated with left ventricular filling pressure in rToF-patients and this inter-ventricular coupling may explain LV underfilling in patients with pulmonary regurgitation and rToF and may be of value to determine right ventricular dysfunction. RV systolic pressure, however, cannot be assessed from the direction of septal movement, in these patients.


Assuntos
Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Disfunção Ventricular Direita , Humanos , Estudos Retrospectivos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Função Ventricular Direita
18.
Pediatr Cardiol ; 43(7): 1631-1644, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35396945

RESUMO

Pulse wave velocity (PWV) by cardiovascular magnetic resonance (CMR) lacks standardization. The aim of this study was to investigate methodological aspects of PWV measurements by CMR in neonates and adolescents. A computer phantom was created to validate the temporal resolution required for accurate PWV. Fifteen neonates and 71 adolescents underwent CMR with reference standard 3D angiography and phase-contrast flow acquisitions, and in a subset coronal overview images. Velocity and flow curves, transit time methods (time-to-foot (TTF), maximum upslope, and time-to-peak (TTP)), and baseline correction methods (no correction, automatic and manual) were investigated. In neonates, required timeframes per cardiac cycle for accurate PWV was 42 for the aortic arch and 41 for the thoracic aorta. In adolescents, corresponding values were 39 and 32. Aortic length differences by overview images and 3D angiography in adolescents were - 16-18 mm (aortic arch) and - 25-30 mm (thoracic aorta). Agreement in PWV between automatic and manual baseline correction was - 0.2 ± 0.3 m/s in neonates and 0.0 ± 0.1 m/s in adolescents. Velocity and flow-derived PWV measurements did not differ in either group (all p > 0.08). In neonates, transit time methods did not differ (all p > 0.19) but in adolescents PWV was higher for TTF (3.8 ± 0.5 m/s) and maximum upslope (3.7 ± 0.6 m/s) compared to TTP (2.7 ± 1.0 m/s; p < 0.0001). This study is a step toward standardization of PWV in neonates and adolescents using CMR. It provides required temporal resolution for phase-contrast flow acquisitions for typical heartrates in neonates and adolescents, and supports 3D angiography and time-to-foot with automatic baseline correction for accurate PWV measurements.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Adolescente , Aorta/patologia , Velocidade do Fluxo Sanguíneo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Análise de Onda de Pulso/métodos , Reprodutibilidade dos Testes
20.
Acta Radiol Open ; 11(1): 20584601211072281, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35096415

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) biomarkers can diagnose and prognosticate kidney disease. Renal volume validation studies are however scarce, and measurements are limited by use of contrast agent or advanced post-processing. PURPOSE: To validate a widely available non-contrast-enhanced MRI method for quantification of renal cortical and medullary volumes in pigs; investigate observer variability of cortical and medullary volumes in humans; and present reference values for renal cortical and medullary volumes in adolescents. MATERIALS AND METHODS: Cortical and medullary volumes were quantified from transaxial in-vivo water-excited MR images in six pigs and 15 healthy adolescents (13-16years). Pig kidneys were excised, and renal cortex and medulla were separately quantified by the water displacement method. Both limits of agreement by the Bland-Altman method and reference ranges are presented as 2.5-97.5 percentiles. RESULTS: Agreement between MRI and ex-vivo quantification were -7 mL (-10-0 mL) for total parenchyma, -4 mL (-9-3 mL) for cortex, and -2 mL (-7-2 mL) for medulla. Intraobserver variability for pig and human kidneys were <5% for total parenchyma, cortex, and medulla. Interobserver variability for both pig and human kidneys were ≤4% for total parenchyma and cortex, and 6% and 12% for medulla. Reference ranges indexed for body surface area and sex were 54-103 mL/m2 (boys) and 56-103 mL/m2 (girls) for total parenchyma, 39-62 mL/m2 and 36-68 mL/m2 for cortex, and 16-45 mL/m2 and 17-42 mL/m2 for medulla. CONCLUSION: The proposed widely available non-contrast-enhanced MRI method can quantify cortical and medullary renal volumes and can be directly implemented clinically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA