Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Transpl Infect Dis ; : e14281, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618895

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) generate lower antibody responses to messenger RNA (mRNA)-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, yet precise mechanisms for this poor response remain uncertain. One potential contributor is suboptimal spike antigen (sAg) translation and expression owing to transplant immunosuppression, which might lead to insufficient exposure to develop humoral and/or cellular immune responses. METHODS: Within a single-arm clinical trial, 65 KTRs underwent ultrasensitive plasma sAg testing before, and 3 and 14 days after, the third mRNA vaccine doses. Anti-SARS-CoV-2 spike antibodies (anti-receptor binding domain [anti-RBD]) were serially measured at 14 and 30 days post-vaccination. Associations between sAg detection and clinical factors were assessed. Day 30 anti-RBD titer was compared among those with versus without sAg expression using Wilcoxon rank sum testing. RESULTS: Overall, 16 (25%) KTRs were sAg positive (sAg+) after vaccination, peaking at day 3. Clinical and laboratory factors were broadly similar in sAg(+) versus sAg(-) KTRs. sAg(+) status was significantly negatively associated with day 30 anti-RBD response, with median (interquartile range) 10.8 (<0.4-338.3) U/mL if sAg(+) versus 709 (10.5-2309.5) U/mL if sAg(-) (i.e., 66-fold lower; p = .01). CONCLUSION: Inadequate plasma sAg does not likely drive poor antibody responses in KTRs, rather sAg detection implies insufficient immune response to rapidly clear vaccine antigen from blood. Other downstream mechanisms such as sAg trafficking and presentation should be explored.

2.
Transplantation ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361233

RESUMO

Transplantation is the ideal therapy for end-stage organ failure, but outcomes for all transplant organs are suboptimal, underscoring the need to develop novel approaches to improve graft survival and function. The complement system, traditionally considered a component of innate immunity, is now known to broadly control inflammation and crucially contribute to induction and function of adaptive T-cell and B-cell immune responses, including those induced by alloantigens. Interest of pharmaceutical industries in complement therapeutics for nontransplant indications and the understanding that the complement system contributes to solid organ transplantation injury through multiple mechanisms raise the possibility that targeting specific complement components could improve transplant outcomes and patient health. Here, we provide an overview of complement biology and review the roles and mechanisms through which the complement system is pathogenically linked to solid organ transplant injury. We then discuss how this knowledge has been translated into novel therapeutic strategies to improve organ transplant outcomes and identify areas for future investigation. Although the clinical application of complement-targeted therapies in transplantation remains in its infancy, the increasing availability of new agents in this arena provides a rich environment for potentially transformative translational transplant research.

3.
Nat Rev Nephrol ; 20(4): 218-232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168662

RESUMO

Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.


Assuntos
Transplante de Rim , Humanos , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/tratamento farmacológico , Transplante Homólogo , Imunoglobulinas , Aloenxertos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Am J Transplant ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219866

RESUMO

Mouse models have been instrumental in understanding mechanisms of transplant rejection and tolerance, but cross-study reproducibility and translation of experimental findings into effective clinical therapies are issues of concern. The Mouse Models in Transplantation symposium gathered scientists and physician-scientists involved in basic and clinical research in transplantation to discuss the strengths and limitations of mouse transplant models and strategies to enhance their utility. Participants recognized that increased procedure standardization, including the use of prespecified, defined endpoints, and statistical power analyses, would benefit the field. They also discussed the generation of new models that incorporate environmental and genetic variables affecting clinical outcomes as potentially important. If implemented, these strategies are expected to improve the reproducibility of mouse studies and increase their translation to clinical trials and, ideally, new Food and Drug Administration-approved drugs.

5.
J Clin Invest ; 134(6)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38271093

RESUMO

Virus-induced memory T cells often express functional cross-reactivity, or heterologous immunity, to other viruses and to allogeneic MHC molecules that is an important component of pathogenic responses to allogeneic transplants. During immune responses, antigen-reactive naive and central memory T cells proliferate in secondary lymphoid organs to achieve sufficient cell numbers to effectively respond, whereas effector memory T cell proliferation occurs directly within the peripheral inflammatory microenvironment. Mechanisms driving heterologous memory T cell proliferation and effector function expression within peripheral tissues remain poorly understood. Here, we dissected proliferation of heterologous donor-reactive memory CD8+ T cells and their effector functions following infiltration into heart allografts with low or high intensities of ischemic inflammation. Proliferation within both ischemic conditions required p40 homodimer-induced IL-15 transpresentation by graft DCs, but expression of effector functions mediating acute allograft injury occurred only in high-ischemic allografts. Transcriptional responses of heterologous donor-reactive memory CD8+ T cells were distinct from donor antigen-primed memory CD8+ T cells during early activation in allografts and at graft rejection. Overall, the results provide insights into mechanisms driving heterologous effector memory CD8+ T cell proliferation and the separation between proliferation and effector function that is dependent on the intensity of inflammation within the tissue microenvironment.


Assuntos
Transplante de Coração , Interleucina-15 , Animais , Camundongos , Linfócitos T CD8-Positivos , Rejeição de Enxerto , Memória Imunológica , Interleucina-15/genética , Camundongos Endogâmicos C57BL , Transplante Homólogo , Interleucina-9/metabolismo
6.
Am J Transplant ; 24(5): 755-764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38141722

RESUMO

High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor ß-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.


Assuntos
Soro Antilinfocitário , Linfócitos T CD8-Positivos , Rejeição de Enxerto , Transplante de Rim , Doadores de Tecidos , Transplante de Rim/efeitos adversos , Humanos , Soro Antilinfocitário/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Masculino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/etiologia , Pessoa de Meia-Idade , Feminino , Adulto , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Prognóstico , Seguimentos , Falência Renal Crônica/cirurgia , Falência Renal Crônica/imunologia , Coelhos , Sobrevivência de Enxerto/imunologia , Depleção Linfocítica
7.
J Infect Dis ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019656

RESUMO

Kidney transplant recipients (KTRs) develop decreased antibody titers to SARS-CoV-2 vaccination compared to healthy controls (HCs), but whether KTRs generate antibodies against key epitopes associated with neutralization is unknown. Plasma from 78 KTRs from a clinical trial of third doses of SARS-CoV-2 vaccines and 12 HCs underwent phage display immunoprecipitation and sequencing (PhIP-Seq) to map antibody responses against SARS-CoV-2. KTRs had lower antibody reactivity to SARS-CoV-2 than HCs, but KTRs and HCs recognized similar epitopes associated with neutralization. Thus, epitope gaps in antibody breadth of KTRs are unlikely responsible for decreased efficacy of SARS-CoV-2 vaccines in this immunosuppressed population.

8.
Gut Microbes ; 15(2): 2267180, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842912

RESUMO

The present report summarizes the United States Department of Veterans Affairs (VA) field-based meeting titled "Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans." Our Veteran patient population experiences a high incidence of service-related chronic physical and mental health problems, such as infection, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), various forms of hematological and non-hematological malignancies, neurologic conditions, end-stage organ failure, requiring transplantation, and posttraumatic stress disorder (PTSD). We report the views of a group of scientists who focus on the current state of scientific knowledge elucidating the mechanisms underlying the aforementioned disorders, novel therapeutic targets, and development of new approaches for clinical intervention. In conclusion, we dovetailed on four research areas of interest: 1) microbiome interaction with immune cells after hematopoietic cell and/or solid organ transplantation, graft-versus-host disease (GVHD) and graft rejection, 2) intestinal inflammation and its modification in IBD and cancer, 3) microbiome-neuron-immunity interplay in mental and physical health, and 4) microbiome-micronutrient-immune interactions during homeostasis and infectious diseases. At this VA field-based meeting, we proposed to explore a multi-disciplinary, multi-institutional, collaborative strategy to initiate a roadmap, specifically focusing on host microbiome-immune interactions among those with service-related chronic diseases to potentially identify novel and translatable therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Microbiota , Veteranos , Humanos , Síndrome do Intestino Irritável/terapia
9.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732256

RESUMO

Human Natural Killer (NK) cells are heterogeneous lymphocytes regulated by variegated arrays of germline-encoded activating and inhibitory receptors. They acquire the ability to detect polymorphic self-antigen via NKG2A/HLA-E or KIR/HLA-I ligand interactions through an education process. Correlations among HLA/KIR genes, kidney transplantation pathology and outcomes suggest that NK cells participate in allograft injury, but mechanisms linking NK HLA/KIR education to antibody-independent pathological functions remain unclear. We used CyTOF to characterize pre- and post-transplant peripheral blood NK cell phenotypes/functions before and after stimulation with allogeneic donor cells. Unsupervised clustering identified unique NK cell subpopulations present in varying proportions across patients, each of which responded heterogeneously to donor cells based on donor ligand expression patterns. Analyses of pre-transplant blood showed that educated, NKG2A/KIR-expressing NK cells responded greater than non-educated subsets to donor stimulators, and this heightened alloreactivity persisted > 6 months post-transplant despite immunosuppression. In distinct test and validation sets of patients participating in two clinical trials, pre-transplant donor-induced release of NK cell Ksp37, a cytotoxicity mediator, correlated with 2-year and 5-year eGFR. The findings explain previously reported associations between NK cell genotypes and transplant outcomes and suggest that pre-transplant NK cell analysis could function as a risk-assessment biomarker for transplant outcomes.

10.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676733

RESUMO

Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-ß1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-ß1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-ß1-dependent effects on T cells.


Assuntos
Transplante de Rim , Humanos , Fator de Crescimento Transformador beta1/genética , Rejeição de Enxerto/genética , Rim , Doadores de Tecidos , Antígenos HLA , Sobrevivência de Enxerto/genética , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética
11.
Front Immunol ; 14: 1195662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520571

RESUMO

Background: Administration of recombinant erythropoietin (EPO), a kidney-produced hormone with erythropoietic functions, has been shown to have multiple immunoregulatory effects in mice and humans, but whether physiological levels of EPO regulate immune function in vivo has not been previously evaluated. Methods: We generated mice in which we could downregulate EPO production using a doxycycline (DOX)-inducible, EPO-specific silencing RNA (shEPOrtTAPOS), and we crossed them with B6.MRL-Faslpr/J mice that develop spontaneous lupus. We treated these B6.MRL/lpr shEPOrtTAPOS with DOX and serially measured anti-dsDNA antibodies, analyzed immune subsets by flow cytometry, and evaluated clinical signs of disease activity over 6 months of age in B6.MRL/lpr shEPOrtTAPOS and in congenic shEPOrtTANEG controls. Results: In B6.MRL/lpr mice, Epo downregulation augmented anti-dsDNA autoantibody levels and increased disease severity and percentages of germinal center B cells compared with controls. It also increased intracellular levels of IL-6 and MCP-1 in macrophages. Discussion: Our data in a murine model of lupus document that endogenous EPO reduces T- and B-cell activation and autoantibody production, supporting the conclusion that EPO physiologically acts as a counterregulatory mechanism to control immune homeostasis.


Assuntos
Doenças Autoimunes , Eritropoetina , Nefropatias , Animais , Humanos , Camundongos , Imunidade , Rim , Camundongos Endogâmicos MRL lpr
13.
Am J Transplant ; 23(6): 744-758, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966905

RESUMO

Kidney transplant recipients (KTRs) show poorer response to SARS-CoV-2 mRNA vaccination, yet response patterns and mechanistic drivers following third doses are ill-defined. We administered third monovalent mRNA vaccines to n = 81 KTRs with negative or low-titer anti-receptor binding domain (RBD) antibody (n = 39 anti-RBDNEG; n = 42 anti-RBDLO), compared with healthy controls (HCs, n = 19), measuring anti-RBD, Omicron neutralization, spike-specific CD8+%, and SARS-CoV-2-reactive T cell receptor (TCR) repertoires. By day 30, 44% anti-RBDNEG remained seronegative; 5% KTRs developed BA.5 neutralization (vs 68% HCs, P < .001). Day 30 spike-specific CD8+% was negative in 91% KTRs (vs 20% HCs; P = .07), without correlation to anti-RBD (rs = 0.17). Day 30 SARS-CoV-2-reactive TCR repertoires were detected in 52% KTRs vs 74% HCs (P = .11). Spike-specific CD4+ TCR expansion was similar between KTRs and HCs, yet KTR CD8+ TCR depth was 7.6-fold lower (P = .001). Global negative response was seen in 7% KTRs, associated with high-dose MMF (P = .037); 44% showed global positive response. Of the KTRs, 16% experienced breakthrough infections, with 2 hospitalizations; prebreakthrough variant neutralization was poor. Absent neutralizing and CD8+ responses in KTRs indicate vulnerability to COVID-19 despite 3-dose mRNA vaccination. Lack of neutralization despite CD4+ expansion suggests B cell dysfunction and/or ineffective T cell help. Development of more effective KTR vaccine strategies is critical. (NCT04969263).


Assuntos
COVID-19 , Transplante de Rim , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Transplante de Rim/efeitos adversos , RNA Mensageiro/genética , Transplantados , Vacinas de mRNA , Receptores de Antígenos de Linfócitos T , Anticorpos Antivirais
15.
J Immunol ; 210(1): 19-23, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454023

RESUMO

T cell-independent (TI) B cell responses to nonprotein Ags involve multiple cues from the innate immune system. Neutrophils express complement receptors and activated neutrophils can release BAFF, but mechanisms effectively linking neutrophil activation to TI B cell responses are incompletely understood. Using germline and conditional knockout mice, we found that TI humoral responses involve alternative pathway complement activation and neutrophil-expressed C3a and C5a receptors (C3aR1/C5aR1) that promote BAFF-dependent B1 cell expansion and TI Ab production. Conditional absence of C3aR1/C5aR1 on neutrophils lowered serum BAFF levels, led to fewer Peyer's patch germinal center B cells, reduced germinal center B cells IgA class-switching, and lowered fecal IgA levels. Together, the results indicate that sequential activation of complement on neutrophils crucially supports humoral TI and mucosal IgA responses through upregulating neutrophil production of BAFF.


Assuntos
Linfócitos B , Neutrófilos , Camundongos , Animais , Proteínas do Sistema Complemento/metabolismo , Camundongos Knockout , Receptores de Complemento/metabolismo , Imunoglobulina A
16.
J Am Soc Nephrol ; 34(1): 145-159, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195441

RESUMO

BACKGROUND: Ischemia-reperfusion (IR) of a kidney transplant (KTx) upregulates TNF α production that amplifies allograft inflammation and may negatively affect transplant outcomes. METHODS: We tested the effects of blocking TNF peri-KTx via a randomized, double-blind, placebo-controlled, 15-center, phase 2 clinical trial. A total of 225 primary transplant recipients of deceased-donor kidneys (KTx; 38.2% Black/African American, 44% White) were randomized to receive intravenous infliximab (IFX) 3 mg/kg or saline placebo (PLBO) initiated before kidney reperfusion. All patients received rabbit anti-thymocyte globulin induction and maintenance immunosuppression (IS) with tacrolimus, mycophenolate mofetil, and prednisone. The primary end point was the difference between groups in mean 24-month eGFR. RESULTS: There was no difference in the primary end point of 24-month eGFR between IFX (52.45 ml/min per 1.73 m 2 ; 95% CI, 48.38 to 56.52) versus PLBO (57.35 ml/min per 1.73 m 2 ; 95% CI, 53.18 to 61.52; P =0.1). There were no significant differences between groups in rates of delayed graft function, biopsy-proven acute rejection (BPAR), development of de novo donor-specific antibodies, or graft loss/death. Immunosuppression did not differ, and day 7 post-KTx plasma analyses showed approximately ten-fold lower TNF ( P <0.001) in IFX versus PLBO. BK viremia requiring IS change occurred more frequently in IFX (28.9%) versus PLBO (13.4%; P =0.004), with a strong trend toward higher rates of BKV nephropathy in IFX (13.3%) versus PLBO (4.9%; P =0.06). CONCLUSIONS: IFX induction therapy does not benefit recipients of kidney transplants from deceased donors on this IS regimen. Because the intervention unexpectedly increased rates of BK virus infections, our findings underscore the complexities of targeting peritransplant inflammation as a strategy to improve KTx outcomes.Clinical Trial registry name and registration number:clinicaltrials.gov (NCT02495077).


Assuntos
Vírus BK , Transplante de Rim , Viroses , Humanos , Imunossupressores/uso terapêutico , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Infliximab/uso terapêutico , Rejeição de Enxerto/prevenção & controle , Inflamação/tratamento farmacológico , Viroses/tratamento farmacológico
17.
J Am Soc Nephrol ; 33(11): 2108-2122, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041788

RESUMO

BACKGROUND: Among patients with COVID-19, kidney transplant recipients (KTRs) have poor outcomes compared with non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort. METHODS: We ascertained clinical data by chart review. A single sample of blood was collected for transcriptome analysis. Total RNA was poly-A selected and RNA was sequenced to evaluate transcriptome changes. We also measured cytokines and chemokines of serum samples collected during acute infection. RESULTS: A total of 64 patients with COVID-19 in KTRs were enrolled, including 31 with acute COVID-19 (<4 weeks from diagnosis) and 33 with post-acute COVID-19 (>4 weeks postdiagnosis). In the blood transcriptome of acute cases, we identified genes in positive or negative association with COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways but downregulation of T cell and adaptive immune activation pathways. This finding was independent of lymphocyte count, despite reduced immunosuppressant use in most KTRs. Compared with acute cases, post-acute cases showed "normalization" of these enriched pathways after 4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of immunosuppression. Analysis of the non-KTR cohort with COVID-19 showed significant overlap with KTRs in these functions. Serum inflammatory cytokines followed an opposite trend (i.e., increased with disease severity), indicating that blood lymphocytes are not the primary source. CONCLUSIONS: The blood transcriptome of KTRs affected by COVID-19 shows decreases in T cell and adaptive immune activation pathways during acute disease that, despite reduced immunosuppressant use, associate with severity. These pathways show recovery after acute illness.


Assuntos
COVID-19 , Transplante de Rim , Humanos , SARS-CoV-2 , COVID-19/genética , Transcriptoma , Doença Aguda , Transplantados , Imunossupressores/uso terapêutico , Citocinas , RNA
18.
Curr Opin Organ Transplant ; 27(5): 399-404, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857345

RESUMO

PURPOSE OF REVIEW: In antibody-mediated allograft rejection, donor-reactive antibodies cause transplant injury in part via complement activation. New mechanistic insights indicate complement also modulates development of humoral immune responses. Herein we review recent data that describes how complement affects antibody formation and we discuss therapeutic implications. RECENT FINDINGS: Extravasating T cells interacting with integrins express and activate intracellular complement that drives immune-metabolic adaptations vital for CD4 + helper cells. Marginal zone B cells can acquire intact major histocompatibility complexes from dendritic cells via complement-dependent trogocytosis for presentation to T cells. Activated B cells in germinal centers receive co-stimulatory signals from T-helper cells. These germinal center B cells undergo coordinate shifts in surface complement regulator expression that permit complement receptor signaling on the germinal center B cells required for affinity maturation. The positively selected, high-affinity B cells can differentiate into plasma cells that produce donor-HLA-reactive antibodies capable of ligating endothelial, among other, graft cells. Subsequent sublytic complement attack can stimulate endothelial cells to activate CD4 + and CD8 + T cells, promoting cellular and humoral rejection. Newly developed complement inhibitors are being tested to prevent/treat transplant rejection. SUMMARY: The complement system influences T-cell, B-cell and endothelial-cell activation, and thereby contributes allograft injury. Emerging therapeutic strategies targeting complement activation have the potential to prevent or abrogate transplant injury and improve transplant outcomes.


Assuntos
Formação de Anticorpos , Isoanticorpos , Proteínas do Sistema Complemento , Células Endoteliais/metabolismo , Rejeição de Enxerto/prevenção & controle , Humanos
19.
Transplant Cell Ther ; 28(8): 472.e1-472.e11, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643350

RESUMO

Conditioning regimens used for hematopoietic stem cell transplantation (HCT) can escalate the severity of acute T cell-mediated graft-versus-host disease (GVHD) by disrupting gastrointestinal integrity and initiating lipopolysaccharide (LPS)-dependent innate immune cell activation. Activation of the complement cascade has been associated with murine GVHD, and previous work has shown that alternative pathway complement activation can amplify T cell immunity. Whether and how mannan-binding lectin (MBL), a component of the complement system that binds mannose as well as oligosaccharide components of LPS and lipoteichoic acid, affects GVHD is unknown. In this study, we tested the hypothesis that MBL modulates murine GVHD and examined the mechanisms by which it does so. We adoptively transferred C3.SW bone marrow (BM) cells ± T cells into irradiated wild type (WT) or MBL-deficient C57Bl/6 (B6) recipients with or without inhibiting MBL-initiated complement activation using C1-esterase inhibitor (C1-INH). We analyzed the clinical severity of disease expression and analyzed intestinal gene and cell infiltration. In vitro studies assessed MBL expression on antigen-presenting cells (APCs) and compared LPS-induced responses of WT and MBL-deficient APCs. MBL-deficient recipients of donor BM ± T cells exhibited significantly less weight loss over the first 2 weeks post-transplantation weeks compared with B6 controls (P < .05), with similar donor engraftment in the 2 groups. In recipients of C3.SW BM + T cells, the clinical expression of GVHD was less severe (P < .05) and overall survival was better (P < .05) in MBL-deficient mice compared with WT mice. On day-7 post-transplantation, analyses showed that the MBL-deficient recipients exhibited less intestinal IL1b, IL17, and IL12 p40 gene expression (P < .05 for each) and fewer infiltrating intestinal CD11c+, CD11b+, and F4/80+ cells and TCRß+, CD4+, CD4+IL17+, and CD8+ T cells (P < .05 for each). Ovalbumin or allogeneic cell immunizations induced equivalent T cell responses in MBL-deficient and WT mice, demonstrating that MBL-deficiency does not directly impact T cell immunity in the absence of irradiation conditioning. Administration of C1-INH did not alter the clinical expression of GVHD in preconditioned WT B6 recipients, suggesting that MBL amplifies clinical expression of GVHD via a complement-independent mechanism. WT, but not MBL-deficient, APCs express MBL on their surfaces. LPS-stimulated APCs from MBL-deficient mice produced less proinflammatory cytokines (P < .05) and induced weaker alloreactive T cell responses (P < .05) compared with WT APCs. Together, our data show that MBL modulates murine GVHD, likely by amplifying complement-independent, LPS-initiated gastrointestinal inflammation. The results suggest that devising strategies to block LPS/MBL ligation on APCs has the potential to reduce the clinical expression of GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Inflamação , Lectina de Ligação a Manose , Animais , Transplante de Medula Óssea , Linfócitos T CD8-Positivos , Doença Enxerto-Hospedeiro/genética , Inflamação/etiologia , Inflamação/genética , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Lectina de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
20.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35389892

RESUMO

Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO's effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor-knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.


Assuntos
Eritropoetina , Linfócitos T Reguladores , Abatacepte , Aloenxertos , Animais , Epoetina alfa , Eritropoetina/genética , Eritropoetina/metabolismo , Camundongos , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA