Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257054

RESUMO

Through the graft polymerization of acrylic monomers onto starch, materials with interesting new properties can be synthesized. Fenton's chemistry, Fe2+/H2O2, is considered to be attractive for the initiation of graft polymerization with the monomer acrylic acid since it is cheap and reacts quickly at ambient conditions and should therefore be easy to scale up. However, the selectivity of the grafting versus the homopolymerization reaction poses a challenge with this monomer and this type of initiator. In the present review paper, we investigate why data from the literature on grafting systems with other monomers and initiation systems tend to show higher graft selectivity. A scheme is presented, based on reaction engineering principles, that supports an explanation for these observed differences. It is found that more selective activation of starch is a factor, but perhaps even more important is a low monomer-to-starch ratio at the starting sites of graft reactions. Since water is the most common solvent, monomers that are less water-soluble have an advantage in this respect. Based on the proposed scheme, methods to improve the graft selectivity with Fenton's initiator and acrylic acid are evaluated. Most promising appears to be a method of gradual monomer dosage. With gelatinized cassava starch in a batch reactor, both the grafting percentage (17 => 29%) and graft selectivity (18 => 31%) could be improved. This can be considered a principal breakthrough. Still, more research and development would be needed to refine the method and to implement the idea in a continuous reactor at a larger scale.

2.
Waste Manag ; 156: 208-215, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493664

RESUMO

The predictability of pyrolysis yields and product composition of mixed plastics has been studied. To do so, pyrolysis of virgin polymers (HDPE, LDPE, PP, PS and PET) and eight individual sorting categories from a real waste DKR-350 stream (PE rigid/film, PP rigid/film, PET, PS, multilayer flexibles, and clogged materials) was performed in a batch reactor at 500 °C at laboratory scale. The obtained oil/wax, gas, and solid yields and the composition of oil/wax of those individual feedstocks were used as input of a superposition model to predict the corresponding pyrolysis yields and oil/wax composition of mixed feeds, which were later compared with the experimentally measured product yields from the pyrolysis of those mixed streams. This linear model predicts the oil/wax yield of the mixed streams to a reasonable extent, with a maximum yield deviation (overestimation) of 8 percentage points. However, the presence of significant amounts of PET (above 33 wt%) in the mixed plastic streams negatively impacts the production of the condensable product and promotes the formation of solid products beyond the expected predicted values. Quantification of the type of carbon (aliphatic, aromatic and carbonyl) present in all the oil/wax products was done using 13C NMR spectroscopy. A linear model could also predict the aliphatic carbon yield in the condensable product from plastic waste streams with high accuracy (maximum yield difference of 6 percentage points). However, the aromatic carbon yield could not be predicted, probably due to the observed behavior of PET, which interacts with other polymers to promote solid product formation.


Assuntos
Plásticos , Pirólise , Plásticos/química , Carbono
3.
Energy Fuels ; 36(20): 12628-12640, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36304983

RESUMO

The thermochemical decomposition of woody biomass has been widely identified as a promising route to produce renewable biofuels. More recently, the use of molten salts in combination with pyrolysis has gathered increased interest. The molten salts may act as a solvent, a heat transfer medium, and possibly also a catalyst. In this study, we report experimental studies on a process to convert woody biomass to a liquid hydrocarbon product with a very low oxygen content using molten salt pyrolysis (350-450 °C and atmospheric pressure) followed by subsequent catalytic conversions of the liquids obtained by pyrolysis. Pyrolysis of woody biomass in molten salt (ZnCl2/NaCl/KCl with a molar composition of 60:20:20) resulted in a liquid yield of 46 wt % at a temperature of 450 °C and a molten salt/biomass ratio of 10:1 (mass). The liquids are highly enriched in furfural (13 wt %) and acetic acid (14 wt %). To reduce complexity and experimental issues related to the production of sufficient amounts of pyrolysis oils for further catalytic upgrading, model studies were performed to convert both compounds to hydrocarbons using a three-step catalytic approach, viz., (i) ketonization of acetic acid to acetone, (ii) cross-aldol condensation between acetone and furfural to C8-C13 products, followed by (iii) a two-stage catalytic hydrotreatment of the latter to liquid hydrocarbons. Ketonization of acetic acid to acetone was studied in a continuous setup over a ceria-zirconia-based catalyst at 250 °C. The catalyst showed no signs of deactivation over a period of 230 h while also achieving high selectivity toward acetone. Furfural was shown to have a negative effect on the catalyst performance, and as such, a separation step is required after pyrolysis to obtain an acetic-acid-enriched fraction. The cross-aldol condensation reaction between acetone and furfural was studied in a batch using a commercial Mg/Al hydrotalcite as the catalyst. Furfural was quantitatively converted with over 90% molar selectivity toward condensed products with a carbon number between C8 and C13. The two-stage hydrotreatment of the condensed product consisted of a stabilization step using a Ni-based Picula catalyst and a further deep hydrotreatment over a NiMo catalyst, in both batch setups. The final product with a residual 1.5 wt % O is rich in (cyclo)alkanes and aromatic hydrocarbons. The overall carbon yield for the four-step approach, from pinewood biomass to middle distillates, is 21%, assuming that separation of furfural and acetic acid after the pyrolysis step can be performed without losses.

4.
Energy Fuels ; 35(22): 18583-18591, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34824490

RESUMO

Fast pyrolysis bio-oil (FPBO), a second-generation liquid bioenergy carrier, is currently entering the market. FPBO is produced from biomass through the fast pyrolysis process and contains a large number of constituents, of which a significant part is still unknown. Various analytical methods have been systematically developed and validated for FPBO in the past; however, reliable methods for characterization of acetaldehyde, formaldehyde, and furfural are still lacking. In this work, different analysis methods with (HS-GC/ECD, HPLC, UV/Vis) and without derivatization (GC/MSD, HPLC) for the characterization of these components were evaluated. Five FPBO samples were used, covering a range of biomass materials (pine wood, miscanthus, and bark), storage conditions (freezer and room temperature), and after treatments (none, filtration, and vacuum evaporation). There was no difference among the methods for the acetaldehyde analysis. A significant difference among the methods for the determination of formaldehyde and furfural was observed. Thus, more data on the accuracy of the methods are required. The precision of all methods was below 10% with the exception of the HPLC analysis of acetaldehyde with an RSD of 14%. The concentration of acetaldehyde in the FPBO produced from the three different biomasses and stored in a freezer after production ranged from 0.24 to 0.60 wt %. Storage at room temperature and vacuum evaporation both decreased significantly the acetaldehyde concentration. Furfural concentrations ranged from 0.11 to 0.36 wt % for the five samples. Storage and after treatment affected the furfural concentration but to a lesser extent than for acetaldehyde. Storage at room temperature decreased formaldehyde similarly to acetaldehyde; however, after vacuum-evaporation the concentration of formaldehyde did not change. Thus, the analysis results indicated that in FPBO the equilibrium of formaldehyde and methylene glycol is almost completely on the methylene glycol side, as in aqueous solutions. All three methods employed here actually measure the sum of free formaldehyde and methylene glycol (FAMG).

5.
ACS Omega ; 6(21): 13847-13857, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095677

RESUMO

Oxidized starch can be efficiently prepared using H2O2 as an oxidant and iron(III) tetrasulfophthalocyanine (FePcS) as a catalyst, with properties in the same range as those for commercial oxidized starches prepared using NaOCl. Herein, we performed an in-depth study on the oxidation of potato starch focusing on the mode of operation of this green catalytic system and its fate as the reaction progresses. At optimum batch reaction conditions (H2O2/FePcS molar ratio of 6000, 50 °C, and pH 10), a high product yield (91 wt %) was obtained with substantial degrees of substitution (DSCOOH of 1.4 and DSCO of 4.1 per 100 AGU) and significantly reduced viscosity (197 mPa·s) by dosing H2O2. Model compound studies showed limited activity of the catalyst for C6 oxidation, indicating that carboxylic acid incorporation likely results from C-C bond cleavage events. The influence of the process conditions on the stability of the FePcS catalyst was studied using UV-vis and Raman spectroscopic techniques, revealing that both increased H2O2 concentration and temperature promote the irreversible degradation of the FePcS catalyst at high pH. The rate and extent of FePcS degradation were found to strongly depend on the initial H2O2 concentration where also the rapid decomposition of H2O2 by FePcS occurs. These results explain why the slow addition of H2O2 in combination with low FePcS catalyst concentration is beneficial for the efficient application in starch oxidation.

6.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785147

RESUMO

A novel biobased monomer for the preparation of thermally reversible networks based on the Diels-Alder reaction was synthesized from jatropha oil. The oil was epoxidized and subsequently reacted with furfurylamine to attach furan groups via an epoxide ring opening reaction. However, furfurylamine also reacted with the ester groups of the triglycerides via aminolysis, thus resulting in short-chain molecules that ultimately yielded brittle thermally reversible polymers upon cross-linking via a Diels-Alder reaction. A full-factorial experimental design was used in finding the optimum conditions to minimize ester aminolysis and to maximize the epoxide ring opening reaction as well as the number of furans attached to the modified oil. The optimum conditions were determined experimentally and were found to be 80 °C, 24 h, 1:1 molar ratio, with 50 mol % of LiBr with respect to the modified oil, resulting in 35% of ester conversion, 99% of epoxide conversion, and an average of 1.32 furans/triglyceride. Ultimately, further optimization by a statistical approach led to an average of 2.19 furans per triglyceride, which eventually yielded a flexible network upon cross-linking via a Diels-Alder reaction instead of the brittle one obtained when the furan-functionalization reaction was not optimized.


Assuntos
Furanos/química , Jatropha/química , Óleos de Plantas/química , Brometos/química , Catálise , Reação de Cicloadição , Compostos de Epóxi/química , Jatropha/metabolismo , Compostos de Lítio/química , Temperatura , Triglicerídeos/química
7.
ChemSusChem ; 12(18): 4304-4312, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313522

RESUMO

5-Hydroxymethylfurfural (HMF) is an important biobased platform chemical obtainable in high selectivity by the hydrolysis of fructose (FRC). However, FRC is expensive, making the production of HMF at a competitive market price highly challenging. Here, it is shown that sugar beet thick juice, a crude, sucrose-rich intermediate in sugar refining, is an excellent feedstock for HMF synthesis. Unprecedented high selectivities and yields of >90 % for HMF were achieved in a biphasic reactor setup at 150 °C using salted diluted thick juice with H2 SO4 as catalyst and 2-methyltetrahydrofuran as a bioderived extraction solvent. The conversion of glucose, obtained by sucrose inversion, could be limited to <10 mol %, allowing its recovery for further use. Interestingly, purified sucrose led to significantly lower HMF selectivity and yields, showing advantages from both an economic and chemical selectivity perspective. This opens new avenues for more cost-effective HMF production.

8.
ACS Catal ; 9(11): 9953-9963, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32953236

RESUMO

A series of heterogeneous catalysts consisting of highly dispersed Pt nanoparticles supported on nanosized ZrO2 (20 to 60 nm) was synthesized and investigated for the one-pot transfer hydrogenation between glycerol and cyclohexene to produce lactic acid and cyclohexane, without any additional H2. Different preparation methods were screened, by varying the calcination and reduction procedures with the purpose of optimizing the dispersion of Pt species (i.e., as single-atom sites or extra-fine Pt nanoparticles) on the ZrO2 support. The Pt/ZrO2 catalysts were characterized by means of transmission electron microscopy techniques (HAADF-STEM, TEM), elemental analysis (ICP-OES, EDX mapping), N2-physisorption, H2 temperature-programmed-reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Based on this combination of techniques it was possible to correlate the temperature of the calcination and reduction treatments with the nature of the Pt species. The best catalyst consisted of subnanometer Pt clusters (<1 nm) and atomically dispersed Pt (as Pt2+ and Pt4+) on the ZrO2 support, which were converted into extra-fine Pt nanoparticles (average size = 1.4 nm) upon reduction. These nanoparticles acted as catalytic species for the transfer hydrogenation of glycerol with cyclohexene, which gave an unsurpassed 95% yield of lactic acid salt at 96% glycerol conversion (aqueous glycerol solution, NaOH as promoter, 160 °C, 4.5 h, at 20 bar N2). This is the highest yield and selectivity of lactic acid (salt) reported in the literature so far. Reusability experiments showed a partial and gradual loss of activity of the Pt/ZrO2 catalyst, which was attributed to the experimentally observed aggregation of Pt nanoparticles.

9.
ACS Sustain Chem Eng ; 6(8): 10923-10933, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30271693

RESUMO

Multifunctional catalytic systems consisting of physical mixtures of Au nanoparticles (2-3 nm) supported on metal oxides and Sn-MCM-41 nanoparticles (50-120 nm) were synthesized and investigated for the selective conversion of glycerol to methyl lactate. The Au catalyst promotes the oxidation of glycerol to trioses, whereas the solid acid Sn-MCM-41 catalyzes the rearrangement of the intermediate trioses to methyl lactate. Among the supported Au nanoparticles, Au/CuO led to the highest yield and selectivity toward methyl lactate, while the Sn-MCM-41 nanoparticles showed much better catalytic performance than a benchmark solid acid catalyst (USY zeolite). The activity of the multifunctional catalytic system was further optimized by tuning the calcination temperature, the gold loading in the Au/CuO catalyst, and the Au/Sn molar ratio, reaching 63% yield of methyl lactate (ML) at 95% glycerol conversion. This catalytic system also showed excellent reusability. The catalytic results were rationalized on the basis of a detailed characterization by means of TEM, N2-physisorption, UV-vis spectroscopy, and by FT-IR using probe molecules (CO and ethanol).

10.
Bioresour Technol ; 267: 93-101, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30015003

RESUMO

The viability of several technical lignins as a source for biobased platform chemicals was investigated via hydrotreatment using a cheap Fe-based limonite catalyst and without using a solvent. In general, high-quality oils (up to 29 wt% total monomers) with an average relative composition of 55% alkylphenolics and 27% aromatics were obtained. Detailed structural investigations showed that the S-G aromatic unit content of the lignins was the most important factor positively affecting overall oil yields. A second parameter was the lignocellulose processing method. Even though alkaline lignin isolation provides more recalcitrant lignins, their lower aliphaticity and methoxy group content partially limit char and gas formation. Finally, enhanced monomer yields could be obtained irrespective of the ether linkage content, and a high amount of ß-O-4 linkages actually showed a slightly negative effect on monomer yields. Overall, the results demonstrate that this route is particularly suitable for processing residual lignin streams.


Assuntos
Reatores Biológicos , Lignina , Catálise , Éteres , Ferro , Solventes
11.
ACS Sustain Chem Eng ; 6(3): 3419-3425, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29607267

RESUMO

5-Hydroxymethylfurfural (HMF) is a platform chemical that can be produced from renewable carbohydrate sources. HMF can be converted to 1,2,4-benzenetriol (BTO) which after catalytic hydrodeoxygenation provides a route to cyclohexanone and cyclohexanol. This mixture, known as KA oil, is an important feedstock for polymeric products such as nylons which use benzene as feedstock that is obtained from the BTX fraction produced in oil refineries. Therefore, the conversion of HMF to BTO provides a renewable, alternative route toward products such as nylons. However, BTO is usually considered an undesired byproduct in HMF synthesis and is only obtained in small amounts. Here, we show that Lewis acid catalysts can be utilized for the selective conversion of HMF to BTO in subsuper critical water. Overall, up to 54 mol % yield of BTO was achieved at 89% HMF conversion using ZnCl2. ZnCl2 and similarly effective Zn(OTf)2 and Fe(OTf)2 are known as relatively soft Lewis acids. Other Lewis acid like Hf(OTf)4 and Sc(OTf)3 gave increased selectivity toward levulinic acid (up to 33 mol %) instead of BTO, a well-known HMF derivative typically obtained by acid catalysis. Catalytic hydrodeoxygenation of BTO toward cyclohexanone in water was achieved in up to 45% yield using 5 wt % Pd on Al2O3 combined with AlCl3 or Al(OTf)3 as catalysts. Additionally, a mild selective oxygen induced dimerization pathway of BTO to 2,2',4,4',5,5'-hexahydroxybiphenyl (5,5'-BTO dimer) was identified.

12.
Ind Eng Chem Res ; 57(2): 470-482, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29398779

RESUMO

Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)- water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid-liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer.

13.
Org Process Res Dev ; 22(12): 1663-1671, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30774297

RESUMO

1,2,4-Benzenetriol (BTO), sourced from the carbohydrate-derived platform chemical 5-hydroxylmethylfurfural (HMF), is an interesting starting point for the synthesis of various biobased aromatic products. However, BTO readily undergoes dimerization and other reactions under mild conditions, making analysis and isolation challenging. To both control and utilize the reactivity of BTO to produce biobased building blocks, its reactivity needs to be better understood. Here it was found that specific BTO aromatic C-H bonds are reactive toward deuterium exchange with D2O, which appears pronounced under acidic conditions at room temperature and can lead to the selective formation of BTO with an aromatic ring that contains one or two deuterium atoms, the first at the five and the second at the three position. By exposure to air, it was shown that BTO forms a 5,5'-linked BTO dimer [1,1'-biphenyl]-2,2',4,4',5,5'-hexaol (1) and subsequently a hydroxyquinone containing dimeric structure 2',4,4',5'-tetrahydroxy-[1,1'-biphenyl]-2,5-dione (2). Additionally, condensed dimer dibenzo[b,d]furan-2,3,7,8-tetraol (3) can be relatively easily accessed. The controlled formation of these symmetric and asymmetric multifunctional dimers illustrates diverse possibilities for BTO to be converted to valuable biobased aromatic compounds. Deuterium exchange was attributed to electrophilic aromatic substitution because this reactivity was found to be independent of oxygen and acid mediated. On the contrary, the dimerization was dependent on the presence of oxygen and thus likely involves radical intermediates. Thus this report overall displays different accessible reaction pathways for BTO that can be exploited for the production of BTO-derived compounds.

14.
Ind Eng Chem Res ; 56(45): 13228-13239, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29170598

RESUMO

We here report experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) in water using sulfuric acid as the catalyst. Both compounds are versatile building blocks for the synthesis of various biobased (bulk) chemicals. A total of 24 experiments were performed in a temperature window of 80-180 °C, a sulfuric acid concentration between 0.005 and 0.5 M, and an initial sucrose concentration between 0.05 and 0.5 M. Glucose, fructose, and HMF were detected as the intermediate products. The maximum LA yield was 61 mol %, obtained at 160 °C, an initial sucrose concentration of 0.05 M, and an acid concentration of 0.2 M. The maximum HMF yield (22 mol %) was found for an acid concentration of 0.05 M, an initial sucrose concentration of 0.05 M, and a temperature of 140 °C. The experimental data were modeled using a number of possible reaction networks. The best model was obtained when using a first order approach in substrates (except for the reversion of glucose) and agreement between experiment and model was satisfactorily. The implication of the model regarding batch optimization is also discussed.

15.
Chem Sci ; 8(9): 6409-6418, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989671

RESUMO

Access to enantiopure compounds on large scale in an environmentally friendly and cost-efficient manner remains one of the greatest challenges in chemistry. Resolution of racemates using enantioselective liquid-liquid extraction has great potential to meet that challenge. However, a relatively feeble understanding of the chemical principles and physical properties behind this technique has hampered the development of hosts possessing sufficient resolving power for their application to large scale processes. Herein we present, employing the previously untested SPINOL based phosphoric acids host family, an in depths study of the parameters affecting the efficiency of the resolution of amino-alcohols in the optic of further understanding the core principles behind ELLE. We have systematically investigated the dependencies of the enantioselection by parameters such as the choice of solvent, the temperature, as well as the pH and bring to light many previously unsuspected and highly intriguing interactions. Furthermore, utilizing these new insights to our advantage, we developed novel, highly efficient, extraction and resolving protocols which provide remarkable levels of enantioselectivity. It was shown that the extraction is catalytic in host by demonstrating transport in a U-tube and finally it was demonstrated how the solvent dependency could be exploited in an unprecedented triphasic resolution system.

16.
Bioresour Technol ; 243: 589-599, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28709064

RESUMO

This paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process' economics revealed higher profits vs. fossil energy carrier.


Assuntos
Biocombustíveis , Lignina , Biomassa , Meio Ambiente , Etanol , Efeito Estufa , Gás Natural
17.
Carbohydr Res ; 446-447: 1-6, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28458081

RESUMO

The conversion of the four possible ketohexoses (fructose, tagatose, sorbose and psicose) into 5-hydroxymethylfurfural (HMF) was explored in water using sulphuric acid as the catalyst (33 mM H2SO4, 120 °C). Significant differences in reactivity were observed and tagatose (48% conversion after 75 min) and psicose (35% conversion after 75 min) were clearly more reactive than fructose and sorbose (around 20% conversion after 75 min). The selectivity to HMF was found to be higher for fructose and psicose than for tagatose and sorbose. 2-Hydroxyacetylfuran (HAF) was shown to be a by-product for mainly sorbose and tagatose (as high as 2% yield). The results indicate that the relative orientation of the hydroxyl groups on C3 and C4 has a major effect on the reactivity and selectivity. This suggests that the dehydration towards HMF takes place via a mechanism with cyclic intermediates in which the C3C4 bond is fixed in a ring structure. A reaction mechanism involving a bicyclic structure is proposed to explain the formation of HAF. The reactivity of the sugars was significantly lower in water than previously observed in methanol.


Assuntos
Frutose/química , Furaldeído/análogos & derivados , Água/química , Catálise , Furaldeído/química , Concentração de Íons de Hidrogênio , Metanol/química
18.
ChemSusChem ; 9(14): 1827-34, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27312687

RESUMO

The acid-catalysed dehydration of the four 2-ketohexoses (fructose, sorbose, tagatose and psicose) to furanics was studied in methanol (65 g L(-1) substrate concentration, 17 and 34 mm sulfuric acid, 100 °C) with Avantium high-throughput technology. Significant differences in the reactivities of the hexoses and yields of 5-hydroxymethylfurfural (HMF) and its methyl ether (MMF) were observed. Psicose and tagatose were the most reactive, and psicose also afforded the highest combined yield of MMF and HMF of approximately 55 % at 96 % sugar conversion. Hydroxyacetylfuran and its corresponding methyl ether were formed as byproducts, particularly for sorbose and tagatose, with a maximum combined yield of 8 % for sorbose. The formation of hydroxyacetylfuran was studied through (13) C NMR spectroscopy with labelled sorbose, which provided new insights into the reaction mechanism.


Assuntos
Furanos/química , Hexoses/química , Metanol/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13
19.
ChemSusChem ; 8(8): 1323-7, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25833148

RESUMO

Noble-metal-free copper-zinc nanoalloy (<150 nm) is found to be uniquely suited for the highly selective catalytic conversion of 5-hydroxymethylfurfural (HMF) to potential biofuels or chemical building blocks. Clean mixtures of 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) with combined product yields up to 97 % were obtained at 200-220 °C using 20-30 bar H2 . It is also possible to convert 10 wt % HMF solutions in CPME, with an excellent DMF yield of 90 %. Milder temperatures favor selective (95 %) formation of 2,5-furandimethanol (FDM). The one-pot conversion of fructose to valuable furan-ethers was also explored. Recycling experiments for DMF production show remarkable catalyst stability. Transmission electron microscopy (TEM) characterization provides more insight into morphological changes of this intriguing class of materials during catalysis.


Assuntos
Ligas/química , Cobre/química , Furaldeído/análogos & derivados , Nanoestruturas/química , Zinco/química , Catálise , Furaldeído/química , Furanos/química , Química Verde , Metanol/química , Pós
20.
Angew Chem Int Ed Engl ; 54(14): 4236-40, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25663451

RESUMO

An unprecedented catalytic pathway for oxa-Michael addition reactions of alcohols to unsaturated nitriles has been revealed using a PNN pincer ruthenium catalyst with a dearomatized pyridine backbone. The isolation of a catalytically competent Ru-dieneamido complex from the reaction between the Ru catalyst and pentenenitrile in combination with DFT calculations supports a mechanism in which activation of the nitrile through metal-ligand cooperativity is a key step. The nitrile-derived Ru-N moiety is sufficiently Brønsted basic to activate the alcohol and initiate conjugate addition of the alkoxide to the α,ß-unsaturated fragment. This reaction proceeds in a concerted manner and involves a six-membered transition state. These features allow the reaction to proceed at ambient temperature in the absence of external base.


Assuntos
Nitrilas/química , Rutênio/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA