Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Field Crops Res ; 302: 109063, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840838

RESUMO

Context: Collection and analysis of large volumes of on-farm production data are widely seen as key to understanding yield variability among farmers and improving resource-use efficiency. Objective: The aim of this study was to assess the performance of statistical and machine learning methods to explain and predict crop yield across thousands of farmers' fields in contrasting farming systems worldwide. Methods: A large database of 10,940 field-year combinations from three countries in different stages of agricultural intensification was analyzed. Random effects models were used to partition crop yield variability and random forest models were used to explain and predict crop yield within a cross-validation scheme with data re-sampling over space and time. Results: Yield variability in relative terms was smallest for wheat and barley in the Netherlands and for wheat in Ethiopia, intermediate for rice in the Philippines, and greatest for maize in Ethiopia. Random forest models comprising a total of 87 variables explained a maximum of 65 % of cereal yield variability in the Netherlands and less than 45 % of cereal yield variability in Ethiopia and in the Philippines. Crop management related variables were important to explain and predict cereal yields in Ethiopia, while predictive (i.e., known before the growing season) climatic variables and explanatory (i.e., known during or after the growing season) climatic variables were most important to explain and predict cereal yield variability in the Philippines and in the Netherlands, respectively. Finally, model cross-validation for regions or years not seen during model training reduced the R2 considerably for most crop x country combinations, while for wheat in the Netherlands this was model dependent. Conclusion: Big data from farmers' fields is useful to explain on-farm yield variability to some extent, but not to predict it across time and space. Significance: The results call for moderate expectations towards big data and machine learning in agronomic studies, particularly for smallholder farms in the tropics where model performance was poorest independently of the variables considered and the cross-validation scheme used.

2.
Proc Natl Acad Sci U S A ; 120(14): e2205771120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972430

RESUMO

This perspective describes the opportunities and challenges of data-driven approaches for crop diversity management (genebanks and breeding) in the context of agricultural research for sustainable development in the Global South. Data-driven approaches build on larger volumes of data and flexible analyses that link different datasets across domains and disciplines. This can lead to more information-rich management of crop diversity, which can address the complex interactions between crop diversity, production environments, and socioeconomic heterogeneity and help to deliver more suitable portfolios of crop diversity to users with highly diverse demands. We describe recent efforts that illustrate the potential of data-driven approaches for crop diversity management. A continued investment in this area should fill remaining gaps and seize opportunities, including i) supporting genebanks to play a more active role in linking with farmers using data-driven approaches; ii) designing low-cost, appropriate technologies for phenotyping; iii) generating more and better gender and socioeconomic data; iv) designing information products to facilitate decision-making; and v) building more capacity in data science. Broad, well-coordinated policies and investments are needed to avoid fragmentation of such capacities and achieve coherence between domains and disciplines so that crop diversity management systems can become more effective in delivering benefits to farmers, consumers, and other users of crop diversity.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA