Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1961): 20211111, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34666526

RESUMO

Phase transitions are an important and extensively studied concept in physics. The insights derived from understanding phase transitions in physics have recently and successfully been applied to a number of different phenomena in biological systems. Here, we provide a brief review of phase transitions and their role in explaining biological processes ranging from collective behaviour in animal flocks to neuronal firing. We also highlight a new and exciting area where phase transition theory is particularly applicable: population collapse and extinction. We discuss how phase transition theory can give insight into a range of extinction events such as population decline due to climate change or microbial responses to stressors such as antibiotic treatment.


Assuntos
Aves , Mudança Climática , Animais , Biologia , Dinâmica Populacional
2.
J Virus Erad ; 5(2): 84-91, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31191911

RESUMO

OBJECTIVES: Current antiretroviral therapy can suppress HIV replication, increase CD4 count and result in increased lifespan. However, it cannot eradicate the virus due to the presence of latent provirus in cellular reservoirs, such as resting CD4+ T cells. Using combination latency-reversing agents to shock the virus out of latency for elimination through immune clearance or viral cytopathic effect is one of the most promising strategies for HIV eradication. Specifically, recent evidence shows that isoform-selective histone deacetylase inhibitors may be more effective than their non-selective counterparts. Therefore, identification and characterisation of new isoform-selective compounds are of prime importance. Here, we sought to determine the ability of two new isoform-targeted hydroxamic acid derivatives to reactivate HIV from latency. METHODS: We used cell lines and infected primary resting CD4+ T cells. These were treated with these compounds with HIV reactivation measured using fluorescence-activated cell sorting, Western blots and luciferase luminescence. Isoform selectivity and acetylation of the HIV promoter were measured by Western blotting and chromatic immunoprecipitation. RESULTS AND CONCLUSIONS: The two new hydroxamic acid derivatives, MC2625 and MC1742, potently reactivate HIV from latency. These compounds are isoform-selective histone deacetylate inhibitors that increase the levels of histone acetylation at the HIV promoter. In addition, they synergise effectively with the protein kinase C modulators bryostatin-1 and INDY, an inhibitor of the dual-specificity tyrosine phosphorylation regulated kinase 1A. We conclude that the combinations of new hydroxamic acid derivatives and bryostatin-1 or INDY could be a new tool for HIV reactivation in the cure efforts.

3.
Nat Methods ; 6(8): 600-2, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19633664

RESUMO

In Drosophila melanogaster, widely used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable after the first cell division as single cells. We propose wide applications of TSG to lineage and genetic mosaic studies.


Assuntos
Linhagem da Célula , Drosophila melanogaster/genética , Genômica/métodos , Mitose , Recombinação Genética , Animais , Células Clonais , Drosophila melanogaster/citologia , Fluorometria , Genômica/instrumentação , Mutação
4.
Science ; 322(5900): 453-6, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18927396

RESUMO

Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Genes de Insetos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Algoritmos , Animais , Linhagem Celular , Biologia Computacional , Drosophila/genética , Proteínas de Drosophila/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Redes e Vias Metabólicas , Fosforilação , Proteômica , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA