Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6687): 1057, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452094

RESUMO

A single photonic device accommodates three different modes of operation.

2.
Biomed Opt Express ; 12(10): 6269-6276, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745735

RESUMO

We demonstrate a near-infrared, femtosecond, diode laser-based source with kW peak power for two-photon microscopy. At a wavelength of 976 nm, the system produces sub-ps pulses operating at a repetition rate of 10 MHz with kilowatt class peak powers suitable for deep tissue two-photon microscopy. The system, integrated with a laser-scanning microscope, images to a depth of 900 µm in a fixed sample of PLP-eGFP labeled mouse brain tissue. This represents a significant development that will lead to more efficient, compact, and accessible laser sources for biomedical imaging.

3.
Opt Express ; 29(9): 13071-13083, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985050

RESUMO

We use a rigorous group theoretical method to identify a class of cylindrical vector beams that can selectively excite the plasmon modes of axially symmetric plasmonic structures. Our choice of the single V-point cylindrical vector beams as the basis to decompose cylindrical beams dramatically simplifies the symmetry analysis in the group theory framework. With numerical simulations, we demonstrate that any plasmon eigenmodes, bright or dark, can be selectively excited individually or jointly. A straightforward protocol to get access to the desired plasmon mode using symmetry coupling is presented.

4.
Opt Express ; 29(3): 4058-4066, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770993

RESUMO

The rotational Doppler shift (RDS) is typically measured by illuminating a rotating target with a laser prepared in a simple, known orbital angular momentum (OAM) superposition. We establish theoretically and experimentally that detecting the rotational Doppler shift does not require the incident light to have a well-defined OAM spectrum but instead requires well-defined correlations within the OAM spectrum. We demonstrate measurement of the rotational Doppler shift using spatially incoherent light.

5.
Opt Lett ; 45(9): 2636-2639, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356835

RESUMO

There are two established methods for measuring rotational Doppler shift: (1) heterodyne and (2) fringe. We identify a key distinction, that only the heterodyne method is sensitive to the rotating object's phase, which results in significant differences in the signal-to-noise ratio (SNR) when measuring multiple rotating particles. When used to measure randomly distributed rotating particles, the fringe method produces its strongest SNR when a single particle is present and its SNR tends to zero as the number of particles increases, whereas the heterodyne method's SNR increases proportionally to the number of particles in the beam.

6.
Sci Rep ; 9(1): 11137, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366899

RESUMO

We present results for a new type of fiber-coupled stimulated emission depletion (STED) microscope which uses a single fiber to transport STED and excitation light, as well as collect the fluorescence signal. Our method utilizes two higher-order eigenmodes of polarization maintaining (PM) fiber to generate the doughnut-shaped STED beam. The modes are excited with separate beams that share no temporal coherence, yielding output that is independent of fiber bending. We measured the resolution using 45 nm fluorescent beads and found a median bead image size of 116 nm. This resolution does not change as function of fiber bending radius, demonstrating robust operation. We report, for the first time, STED images of fixed biological samples collected in the epi-direction through fiber. Our microscope design shows promise for future use in super-resolution micro-endoscopes and in vivo neural imaging in awake and freely-behaving animals.

7.
Opt Lett ; 42(14): 2683-2686, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708143

RESUMO

For the first time, to the best of our knowledge, light with orbital angular momentum (OAM) of ±2ℏ per photon is produced using commercially available polarization-maintaining fiber with modal purity of 96%. Twist measurements demonstrate that the average orbital angular momentum can be continuously tuned between ±2ℏ. The authors consider beams of non-integer OAM, created using the presented method, as superpositions of integer OAM states.

8.
Appl Opt ; 55(12): 3214-8, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140090

RESUMO

An apparatus was designed and assembled to measure scattered light in the range of 180°±6° where enhanced backscattering, the cause of a glory, occurs. The apparatus was calibrated and tested using Fraunhofer circular aperture diffraction, angle of incidence correction, and a diffuse reflector. Theory indicates that backscattering is strongly dependent on particle size, refractive index, and shape. Experimental measurements from polystyrene latex spheres of two sizes and water droplets showed good agreement with Mie theory, but also indicated the extreme sensitivity of the backscattering to particle parameters. The results presented should have use in the fields of particle scattering, particle metrology, and LIDAR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA