Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Elife ; 132024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660940

RESUMO

Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.


Assuntos
Barreira Hematoencefálica , Hidrolases de Éster Carboxílico , Ácidos Graxos , Inflamação , Neuroglia , Animais , Barreira Hematoencefálica/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética
2.
Nanoscale Adv ; 6(5): 1447-1459, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419865

RESUMO

Early detection of specific oral bacterial species would enable timely treatment and prevention of certain oral diseases. In this work, we investigated the sensitivity and specificity of functionalized gold nanoparticles for plasmonic sensing of oral bacteria. This approach is based on the aggregation of positively charged gold nanoparticles on the negatively charged bacteria surface and the corresponding localized surface plasmon resonance (LSPR) shift. Gold nanoparticles were synthesized in different sizes, shapes and functionalization. A biosensor array was developed consisting of spherical- and anisotropic-shaped (1-hexadecyl) trimethylammonium bromide (CTAB) and spherical mercaptoethylamine (MEA) gold nanoparticles. It was used to detect four oral bacterial species (Aggregatibacter actinomycetemcomitans, Actinomyces naeslundii, Porphyromonas gingivalis and Streptococcus oralis). The plasmonic response was measured and analysed using RGB and UV-vis absorbance values. Both methods successfully detected the individual bacterial species based on their unique responses to the biosensor array. We present an in-depth study relating the bacteria zeta potential and AuNP aggregation to plasmonic response. The sensitivity depends on multiple parameters, such as bacterial species and concentration as well as gold nanoparticle shape, concentration and functionalization.

3.
Cells ; 13(2)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247806

RESUMO

Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Sinapses , Animais , Feminino , Masculino , Camundongos , Morte Celular , Denervação , Hipocampo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/genética
4.
Cells ; 12(22)2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998386

RESUMO

Whole-exome sequencing has expedited the diagnostic work-up of primary ciliary dyskinesia (PCD), when used in addition to clinical phenotype and nasal nitric oxide. However, it reveals variants of uncertain significance (VUS) in established PCD genes or (likely) pathogenic variants in genes of uncertain significance in approximately 30% of tested individuals. We aimed to assess genotype-phenotype correlations in adults with bronchiectasis, clinical suspicion of PCD, and inconclusive whole-exome sequencing results using transmission electron microscopy (TEM) and ciliary image averaging by the PCD Detect software. We recruited 16 patients with VUS in CCDC39, CCDC40, CCDC103, DNAH5, DNAH5/CCDC40, DNAH8/HYDIN, DNAH11, and DNAI1 as well as variants in the PCD candidate genes DNAH1, DNAH7, NEK10, and NME5. We found normal ciliary ultrastructure in eight patients with VUS in CCDC39, DNAH1, DNAH7, DNAH8/HYDIN, DNAH11, and DNAI1. In six patients with VUS in CCDC40, CCDC103, DNAH5, and DNAI1, we identified a corresponding ultrastructural hallmark defect. In one patient with homozygous variant in NME5, we detected a central complex defect supporting clinical relevance. Using TEM as a targeted approach, we established important genotype-phenotype correlations and definite PCD in a considerable proportion of patients. Overall, the PCD Detect software proved feasible in support of TEM.


Assuntos
Síndrome de Kartagener , Humanos , Adulto , Síndrome de Kartagener/genética , Mutação , Cílios/ultraestrutura , Genótipo , Microscopia Eletrônica de Transmissão , Nucleosídeo NM23 Difosfato Quinases
5.
PLoS One ; 18(10): e0292616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824548

RESUMO

INTRODUCTION: Previous studies demonstrated a release of toxic metals, e.g. nickel and chromium, from stainless steel bars used for minimally invasive repair of pectus excavatum (MIRPE). In the present study, we investigated the impact of titanium nitride coating on the metal release and exposure of MIRPE patients. MATERIAL AND METHODS: We analyzed the courses of nickel and chromium levels in blood, urine and local tissue in patients undergoing MIRPE with a titanium nitride coated pectus bar between 03/2017 and 10/2018. Sample collection was scheduled prior to MIRPE, at defined postoperative time points and at bar removal. Additionally, we evaluated irritative symptoms. Results were compared to a control group who received uncoated stainless steel bars in a previous time period (03/2015-02/2017). RESULTS: 12 patients received coated pectus bars (mean age 15.7 years). The control group included 28 patients. After implantation of a titanium nitride coated bar, significant increase in systemic nickel and chromium levels after one, two and three years was noted. In an interim analysis one year after MIRPE, we observed patients with coated bars to have significantly elevated trace metal values compared to the control group. This elevation persisted throughout the observation period. Tissue metal values were also significantly increased. Irritative symptoms occurred significantly more often in study patients compared to controls (50.0% vs. 14.3%). CONCLUSIONS: Coating of pectus bars with titanium nitride failed to reduce metal contamination after MIRPE. Instead, it resulted in a significant increase of trace metal levels after MIRPE, compared to patients with stainless steel bars, which may be explained by wear of the coating and inter-component mobilization processes.


Assuntos
Tórax em Funil , Oligoelementos , Humanos , Adolescente , Tórax em Funil/cirurgia , Níquel , Aço Inoxidável , Metais , Cromo , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Estudos Retrospectivos , Resultado do Tratamento
6.
Blood Adv ; 7(21): 6771-6781, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37756521

RESUMO

Achieving tolerance toward factor VIII (FVIII) remains an important goal of hemophilia treatment. Up to 40% of patients with severe hemophilia A (HA) develop neutralizing antibodies against FVIII, and the only proven treatment to achieve tolerance is infusion of FVIII over prolonged periods in the context of immune tolerance induction. Here, we addressed the role of von Willebrand factor (VWF) as a modulator of anti-FVIII antibody effector functions and the FVIII-specific recall response in an HA mouse model. Analytical ultracentrifugation was used to demonstrate formation of FVIII-containing immune complexes (FVIII-ICs). VWF did not fully prevent FVIII-IC formation but was rather incorporated into larger macromolecular complexes. VWF prevented binding of FVIII-ICs to complement C1q, most efficiently when it was preincubated with FVIII before the addition of antibodies. It also prevented binding to immobilized Fc-γ receptor and to bone marrow-derived dendritic cells. An in vitro model of the anti-FVIII recall response demonstrated that addition of VWF to FVIII abolished the proliferation of FVIII-specific antibody-secreting cells. After adoptive transfer of sensitized splenocytes into immunocompetent HA mice, the FVIII recall response was diminished by VWF. In summary, these data indicate that VWF modulates the formation and effector functions of FVIII-ICs and attenuates the secondary immune response to FVIII in HA mice.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Camundongos , Animais , Fator VIII/metabolismo , Fator de von Willebrand/metabolismo , Hemofilia A/terapia , Complexo Antígeno-Anticorpo
7.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296588

RESUMO

Primary ciliary dyskinesia (PCD) is a rare heterogenic genetic disorder associated with perturbed biogenesis or function of motile cilia. Motile cilia dysfunction results in diminished mucociliary clearance (MCC) of pathogens in the respiratory tract and chronic airway inflammation and infections successively causing progressive lung damage. Current approaches to treat PCD are symptomatic, only, indicating an urgent need for curative therapeutic options. Here, we developed an in vitro model for PCD based on human induced pluripotent stem cell (hiPSC)-derived airway epithelium in Air-Liquid-Interface cultures. Applying transmission electron microscopy, immunofluorescence staining, ciliary beat frequency, and mucociliary transport measurements, we could demonstrate that ciliated respiratory epithelia cells derived from two PCD patient-specific hiPSC lines carrying mutations in DNAH5 and NME5, respectively, recapitulate the respective diseased phenotype on a molecular, structural and functional level.


Assuntos
Transtornos da Motilidade Ciliar , Células-Tronco Pluripotentes Induzidas , Humanos , Sistema Respiratório , Epitélio , Transtornos da Motilidade Ciliar/genética , Fenótipo , Nucleosídeo NM23 Difosfato Quinases
8.
Histochem Cell Biol ; 160(2): 83-96, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386200

RESUMO

Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.


Assuntos
Glicocálix , Dióxido de Tório , Camundongos , Humanos , Animais , Heparina Liase , Elétrons , Glicosaminoglicanos
9.
Front Bioeng Biotechnol ; 11: 957458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741762

RESUMO

Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.

10.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637807

RESUMO

To enable rapid propagation of action potentials, axons are ensheathed by myelin, a multilayered insulating membrane formed by oligodendrocytes. Most of the myelin is generated early in development, resulting in the generation of long-lasting stable membrane structures. Here, we explored structural and dynamic changes in central nervous system myelin during development. To achieve this, we performed an ultrastructural analysis of mouse optic nerves by serial block face scanning electron microscopy (SBF-SEM) and confocal time-lapse imaging in the zebrafish spinal cord. We found that myelin undergoes extensive ultrastructural changes during early postnatal development. Myelin degeneration profiles were engulfed and phagocytosed by microglia using exposed phosphatidylserine as one "eat me" signal. In contrast, retractions of entire myelin sheaths occurred independently of microglia and involved uptake of myelin by the oligodendrocyte itself. Our findings show that the generation of myelin early in development is an inaccurate process associated with aberrant ultrastructural features that require substantial refinement.


Assuntos
Microglia , Bainha de Mielina , Nervo Óptico , Peixe-Zebra , Animais , Camundongos , Axônios/ultraestrutura , Microglia/ultraestrutura , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Microscopia Eletrônica de Varredura , Fagocitose , Imagem com Lapso de Tempo
11.
Plant Physiol ; 190(3): 1896-1914, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976139

RESUMO

European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.


Assuntos
Proteínas de Arabidopsis , Viscum album , Complexo de Proteína do Fotossistema I/metabolismo , Viscum album/metabolismo , Proteínas de Arabidopsis/metabolismo , Prótons , Fotossíntese , Transporte de Elétrons , Cloroplastos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/metabolismo
12.
PLoS One ; 17(3): e0264486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286342

RESUMO

After spinal cord injury, gliomesenchymal scaring inhibits axonal regeneration as a physical barrier. In peripheral nerve injuries, native spider silk was shown to be an effective scaffold to facilitate axonal re-growth and nerve regeneration. This study tested a two-composite scaffold made of longitudinally oriented native spider silk containing a Haemocomplettan fibrin sheath to bridge lesions in the spinal cord and enhance axonal sprouting. In vitro cultivation of neuronal cells on spider silk and fibrin revealed no cytotoxicity of the scaffold components. When spinal cord tissue was cultured on spider silk that was reeled around a metal frame, migration of different cell types, including neurons and neural stem cells, was observed. The scaffold was implanted into spinal cord lesions of four Wistar rats to evaluate the physical stress caused on the animals and examine the bridging potential for axonal sprouting and spinal cord regeneration. However, the implantation in-vivo resulted in a granulomatous foreign body reaction. Spider silk might be responsible for the strong immune response. Thus, the immune response to native spider silk seems to be stronger in the central nervous system than it is known to be in the peripheral body complicating the application of native spider silk in spinal cord injury treatment.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Fibrina , Reação a Corpo Estranho , Regeneração Nervosa , Ratos , Ratos Wistar , Seda , Medula Espinal , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais
14.
Artif Organs ; 46(5): 827-837, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34904254

RESUMO

BACKGROUND: Patients receiving left ventricle assist devices (LVADs) as bridge to recovery remain a minority with 1%-5% of LVADs explanted after improvement of myocardial function. Nevertheless, considering the growing population of patients supported with LVADs, an increasing demand of new explantation strategies is expected in the near future. A novel plug for LVAD explantation has been developed and its biocompatibility profile needs to be proved. This study tested the biocompatibility of this novel plug in an in vivo ovine model. METHODS: Six adult Blackhead Persian female sheep received plug implantation on the cardiac apex via minimally invasive approach and were clinically observed up to 90 days. Echocardiography was performed to detect thrombus formation or further plug-related complications. After the observation period, euthanasia was performed and samples including the plug and the surrounding tissues were obtained to be analyzed with correlative light and electron microscopy. Organ necrosis, ischemia and peripheral embolism were investigated. RESULTS: Three animals survived surgery and completed the follow-up time without experiencing clinical complications. Echocardiographic controls excluded the presence of an intracavitary thrombus in the left ventricle (LV). Autopsy confirmed no signs of local infection, LV thrombus or peripheral embolism. Light and electron microscopy revealed an intact epithelium covering a layer of connective tissue on the plug surface facing the heart lumen. CONCLUSIONS: This novel apical plug for LVAD explantation allows for endothelial and connective tissue growth on its ventricular side within 90 days from surgery. Further studies are required to fully demonstrate the biocompatibility of this apical plug and investigate the optimal anticoagulation regimen to be applied after implantation.


Assuntos
Embolia , Insuficiência Cardíaca , Coração Auxiliar , Animais , Remoção de Dispositivo , Estudos de Viabilidade , Feminino , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Humanos , Ovinos
15.
Cell Mol Life Sci ; 78(23): 7649-7662, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34694438

RESUMO

Oxygen on its transport route from lung to tissue mitochondria has to cross several cell membranes. The permeability value of membranes for O2 (PO2), although of fundamental importance, is controversial. Previous studies by mostly indirect methods diverge between 0.6 and 125 cm/s. Here, we use a most direct approach by observing transmembrane O2 fluxes out of 100 nm liposomes at defined transmembrane O2 gradients in a stopped-flow system. Due to the small size of the liposomes intra- as well as extraliposomal diffusion processes do not affect the overall kinetics of the O2 release process. We find, for cholesterol-free liposomes, the unexpectedly low PO2 value of 0.03 cm/s at 35 °C. This PO2 would present a serious obstacle to O2 entering or leaving the erythrocyte. Cholesterol turns out to be a novel major modifier of PO2, able to increase PO2 by an order of magnitude. With a membrane cholesterol of 45 mol% as it occurs in erythrocytes, PO2 rises to 0.2 cm/s at 35 °C. This PO2 is just sufficient to ensure complete O2 loading during passage of erythrocytes through the lung's capillary bed under the conditions of rest as well as maximal exercise.


Assuntos
Permeabilidade da Membrana Celular , Colesterol/metabolismo , Eritrócitos/metabolismo , Bicamadas Lipídicas/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Humanos
16.
J Am Soc Nephrol ; 32(11): 2777-2794, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716242

RESUMO

BACKGROUND: Autoantibodies binding to podocyte antigens cause idiopathic membranous glomerulonephritis (iMGN). However, it remains elusive how autoantibodies reach the subepithelial space because the glomerular filtration barrier (GFB) is size selective and almost impermeable for antibodies. METHODS: Kidney biopsies from patients with iMGN, cell culture, zebrafish, and mouse models were used to investigate the role of nephronectin (NPNT) regulating microRNAs (miRs) for the GFB. RESULTS: Glomerular endothelial cell (GEC)-derived miR-192-5p and podocyte-derived miR-378a-3p are upregulated in urine and glomeruli of patients with iMGN, whereas glomerular NPNT is reduced. Overexpression of miR-192-5p and morpholino-mediated npnt knockdown induced edema, proteinuria, and podocyte effacement similar to podocyte-derived miR-378a-3p in zebrafish. Structural changes of the glomerular basement membrane (GBM) with increased lucidity, splitting, and lamellation, especially of the lamina rara interna, similar to ultrastructural findings seen in advanced stages of iMGN, were found. IgG-size nanoparticles accumulated in lucidity areas of the lamina rara interna and lamina densa of the GBM in npnt-knockdown zebrafish models. Loss of slit diaphragm proteins and severe structural impairment of the GBM were further confirmed in podocyte-specific Npnt knockout mice. GECs downregulate podocyte NPNT by transfer of miR-192-5p-containing exosomes in a paracrine manner. CONCLUSIONS: Podocyte NPNT is important for proper glomerular filter function and GBM structure and is regulated by GEC-derived miR-192-5p and podocyte-derived miR-378a-3p. We hypothesize that loss of NPNT in the GBM is an important part of the initial pathophysiology of iMGN and enables autoantigenicity of podocyte antigens and subepithelial immune complex deposition in iMGN.


Assuntos
Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/fisiopatologia , Glomerulonefrite Membranosa/genética , Glomérulos Renais/metabolismo , MicroRNAs/fisiologia , Animais , Complexo Antígeno-Anticorpo/análise , Autoantígenos/genética , Autoantígenos/imunologia , Células Cultivadas , Técnicas de Cocultura , Exossomos/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica , Marcação de Genes , Membrana Basal Glomerular/imunologia , Membrana Basal Glomerular/ultraestrutura , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/fisiopatologia , Tiossulfato Sódico de Ouro , Humanos , Nanopartículas Metálicas , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/urina , Comunicação Parácrina , Permeabilidade , Podócitos/imunologia , Podócitos/metabolismo , Proteinúria/etiologia , Transfecção , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
17.
Sci Rep ; 11(1): 13333, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172766

RESUMO

Cilia are protrusions of the cell surface and composed of hundreds of proteins many of which are evolutionary and functionally well conserved. In cells assembling motile cilia the expression of numerous ciliary components is under the control of the transcription factor FOXJ1. Here, we analyse the evolutionary conserved FOXJ1 target CFAP161 in Xenopus and mouse. In both species Cfap161 expression correlates with the presence of motile cilia and depends on FOXJ1. Tagged CFAP161 localises to the basal bodies of multiciliated cells of the Xenopus larval epidermis, and in mice CFAP161 protein localises to the axoneme. Surprisingly, disruption of the Cfap161 gene in both species did not lead to motile cilia-related phenotypes, which contrasts with the conserved expression in cells carrying motile cilia and high sequence conservation. In mice mutation of Cfap161 stabilised the mutant mRNA making genetic compensation triggered by mRNA decay unlikely. However, genes related to microtubules and cilia, microtubule motor activity and inner dyneins were dysregulated, which might buffer the Cfap161 mutation.


Assuntos
Cílios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Axonema/metabolismo , Corpos Basais/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Feminino , Masculino , Camundongos , Microtúbulos/metabolismo
18.
PLoS Genet ; 17(6): e1009619, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161347

RESUMO

Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function.


Assuntos
Células Epiteliais Alveolares/metabolismo , Asma/genética , Homeostase/genética , Proteína 3 de Membrana Associada ao Lisossomo/genética , Proteína C Associada a Surfactante Pulmonar/genética , Surfactantes Pulmonares/metabolismo , Resistência das Vias Respiratórias , Células Epiteliais Alveolares/patologia , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Regulação da Expressão Gênica , Lipidômica , Pulmão/metabolismo , Pulmão/patologia , Proteína 3 de Membrana Associada ao Lisossomo/deficiência , Camundongos , Camundongos Knockout , Ovalbumina/administração & dosagem , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Testes de Função Respiratória , Transdução de Sinais
19.
Cryobiology ; 101: 67-77, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077709

RESUMO

Stallion sperm is typically cryopreserved using low cooling rates and low concentrations of cryoprotective agents (CPAs). The inevitable water-to-ice phase transition during cryopreservation is damaging and can be prevented using vitrification. Vitrification requires high cooling rates and high CPA concentrations. In this study, the feasibility of stallion sperm vitrification was investigated. A dual-syringe pump system was used to mix sperm equilibrated in a solution with a low concentration of CPAs, with a solution containing a high CPA concentration, and to generate droplets of a defined size (i.e., ~20 µL) that were subsequently cooled by depositing on an aluminum alloy block placed in liquid nitrogen. Mathematical modeling was performed to compute the heat transfer and rate of cooling. The minimum CPA concentration needed for vitrification was determined for various CPAs (glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide) and combinations thereof, while effects of droplet size and carrier solution were also identified. Sperm vitrification was eventually done using a glycerol/propylene glycol (1/1) mixture at a final concentration of 45% in buffered saline supplemented with 3% albumin and polyvinylpyrrolidon, while warming was done in standard diluent supplemented with 100 mM sucrose. The sperm concentration was found to greatly affect sperm membrane integrity after vitrification-and-warming, i.e., was found to be 21 ± 12% for 10 × 106 sperm mL-1 and 54 ± 8% for 1 × 106 sperm mL-1. However, an almost complete loss of sperm motility was observed. In conclusion, successful sperm vitrification requires establishing the narrow balance between droplet size, sperm concentration, CPA type and concentration, and exposure time.


Assuntos
Crioprotetores , Preservação do Sêmen , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Cavalos , Masculino , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Vitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA