Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(6): 065001, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243575

RESUMO

We present a nanomechanical platform for real-time quantitative label-free detection of target biomolecules in a liquid environment with mass sensitivity down to few pg. Newly fabricated arrays of up to 18 cantilevers are integrated in a micromachined fluidic chamber, connected to software-controlled fluidic pumps for automated sample injections. We discuss two functionalization approaches to independently sensitize the interface of different cantilevers. A custom piezo-stack actuator and optical readout system enable the measurement of resonance frequencies up to 2 MHz. We implement a new measurement strategy based on a phase-locked loop (PLL), built via in-house developed software. The PLL allows us to track, within the same experiment, the evolution of resonance frequency over time of up to four modes for all the cantilevers in the array. With respect to the previous measurement technique, based on standard frequency sweep, the PLL enhances the estimated detection limit of the device by a factor of 7 (down to 2 pg in 5 min integration time) and the time resolution by more than threefold (below 15 s), being on par with commercial gold-standard techniques. The detection limit and noise of the new setup are investigated via Allan deviation and standard deviation analysis, considering different resonance modes and interface chemistries. As a proof-of-concept, we show the immobilization and label-free in situ detection of live bacterial cells (E. coli), demonstrating qualitative and quantitative agreement in the mechanical response of three different resonance modes.


Assuntos
Escherichia coli , Técnicas Biossensoriais , Vibração
2.
Nanoscale ; 13(4): 2338-2349, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33438712

RESUMO

Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed. We developed a clinical diagnostic device based on piezo-actuated nanoresonators that perform as quantitative in situ calibrated nano-bio sensors for specific detection of multiple target molecules in serum samples. The immunoassay successfully diagnoses humoral immune responses induced by malaria vaccine candidates and reveals the timeline and stage of the infection. We applied the newly developed strategy to a variety of different samples, from pure antibody/vaccine solutions, to blood samples from clinical trials on both naïve and pre-exposed malaria volunteers from sub-Saharan countries. Our nanomechanical assay provides a direct one-step label-free quantitative immunoassay that is on par with the gold-standard, multi-step enzyme-linked immunosorbent assay (ELISA). We achieve a limit of detection of few pg ml-1, or sub-pM concentrations. The 6 µl sample volume allows more than 50 experiments from one finger prick. Furthermore, we simultaneously detected multiple analytes by differential functionalization of multiple sensors in parallel. The inherent differential read-out with in situ controls reduces false positive results. Due to the faster turnaround time, the minimal volume required and the automatized handling system, this technique has great potential for miniaturization and routine diagnostics in pandemic emergencies.


Assuntos
Vacinas Antimaláricas , Malária , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , Malária/diagnóstico , Malária/prevenção & controle , Nanotecnologia
3.
Nanoscale Adv ; 3(24): 6903-6911, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36132357

RESUMO

SARS-CoV-2 is the cause of a global pandemic that has led to more than 4 million deaths, continues to spread and holds the world in a tight grip. The virus has developed substantial mutations that undermine the efficacy of current vaccines and monoclonal antibody therapies. Semi-quantitative immuno - and neutralization assays are unable to provide direct quantitative insights about the minute variations of emerging mutants. Here, we develop a quantitative assay that enables synchronous screening of emerging variant epitopes with single amino acid resolution. We report on specific label-free quantitative nanomechanical analysis of pseudovirus spike interaction with ACE2 receptors. Within minutes, we can characterize the B.1.1.7 variant transmissibility due to its 63% increased binding, and measure a 60% reduced efficacy of antibodies towards B.1.351 and P.1 variants. Our technology can assist vaccine development studies, with focus on comparing protection patterns and novel vaccine candidates and tracking of immunity over time.

4.
Nanoscale ; 10(26): 12797-12804, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947396

RESUMO

Advances in prevention, diagnosis and therapy are coupled to innovation and development of new medical tools, leading to improved patient prognosis. We developed an automatic biosensor platform that could provide a non-invasive, rapid and personalised diagnosis using nanomechanical cantilever sensors. miRNA are involved in gene expression and are extractable biomarkers for multiple diseases. We detected specific expression patterns of miRNA relevant to cancer and adverse drug effects directly in cell lysates or blood based samples using only a few microliters of sample within one hour. Specific miRNA hybridisation to the upper cantilever surface induces physical bending of the sensor which is detected by monitoring the position of a laser that reflects from the sensors surface. Internal reference sensors negate environmental and nonspecific effects. We showed that the sensitivity of label free cantilever nanomechanical sensing of miRNA surpasses that of surface plasmon resonance by more than three orders of magnitude. A cancer associated miRNA expression profile from cell lysates and one associated with hepatocytes derived from necrotic liver tissue in blood-based samples has been successfully detected. Our label free mechanical approach displays the capability to perform in relevant clinical samples while also obtaining comparable results to PCR based techniques. Without the need to individually extend, amplify or label each target allowing multitarget analysis from one sample.


Assuntos
Técnicas Biossensoriais , Fígado/lesões , MicroRNAs/análise , Neoplasias/diagnóstico , Hepatócitos , Humanos , MicroRNAs/sangue , Ressonância de Plasmônio de Superfície
5.
Angew Chem Int Ed Engl ; 57(4): 1025-1029, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29178528

RESUMO

An understanding of the photoisomerization mechanism of molecules bound to a metal surface at the molecular scale is required for designing photoswitches at surfaces. It has remained a challenge to correlate the surface structure and isomerization of photoswitches at ambient conditions. Herein, the photoisomerization of a self-assembled monolayer of azobenzene-thiol molecules on a Au surface was investigated using scanning tunneling microscopy and tip-enhanced Raman spectroscopy. The unique signature of the cis isomer at 1525 cm-1 observed in tip-enhanced Raman spectra was clearly distinct from the trans isomer. Furthermore, tip-enhanced Raman images of azobenzene thiols after ultraviolet and blue light irradiation are shown with nanoscale spatial resolution, demonstrating a reversible conformational change. Interestingly, the cis isomers of azobenzene-thiol molecules were preferentially observed at Au grain edges, which is confirmed by density functional theory.

6.
Nanoscale ; 9(45): 17939-17947, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29125171

RESUMO

Clinical coagulation diagnostics often requires multiple tests. Coagulation times are a first indication of an abnormal coagulation process, such as a coagulation factor deficiency. To determine the specific deficient factor, additional immuno- and/or enzyme assays are necessary. Currently, every clinical laboratory has to normalize their assays (international normalized ratio, INR), and therefore, certain variability within the clinical analytics exists. We report a novel strategy for a quick, reliable and quantitative diagnosis of blood coagulation diseases (e.g. haemophilia) and for monitoring factor replacement and anticoagulant therapies (e.g. heparin treatment). We exploit nano-oscillations of microcantilevers for real-time measurements of the evolving blood plasma clot strength (viscosity). The sensors are oscillated at multiple high resonance mode numbers, in order to minimise the oscillation amplitude (a few nanometers), to provide direct internal control and to increase the quality factor. Along with the activated thromboplastin time (aPTT) and prothrombin time (PT) other parameters important for thrombosis diagnostics can be obtained, including the final clot strength and the fibrinolysis time. We demonstrate the dependence of the parameters on factor deficiencies and we diagnose a specific factor deficiency through an integrated and quantitative in situ immunoassay. This approach does not require continuous calibration since it delivers an absolute quantity (clot strength). The low sample volume required (a few µl) and the ability to measure different parameters within the same test (PT, aPTT and global coagulation assay) make the presented technique a versatile point-of-care device for clinical coagulation diagnostics.


Assuntos
Transtornos da Coagulação Sanguínea/diagnóstico , Testes de Coagulação Sanguínea/métodos , Coagulação Sanguínea , Anticoagulantes/uso terapêutico , Heparina/uso terapêutico , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , Tempo de Tromboplastina Parcial , Tempo de Protrombina
7.
Proc Natl Acad Sci U S A ; 114(22): E4399-E4407, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507157

RESUMO

Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How cotranslational protein folding and the rate of synthesis are linked to a protein's amino acid sequence is still not well defined. Here, we follow synthesis by individual ribosomes using dual-trap optical tweezers and observe simultaneous folding of the nascent polypeptide chain in real time. We show that observed stalling during translation correlates with slowed peptide bond formation at successive proline sequence positions and electrostatic interactions between positively charged amino acids and the ribosomal tunnel. We also determine possible cotranslational folding sites initiated by hydrophobic collapse for an unstructured and two globular proteins while directly measuring initial cotranslational folding forces. Our study elucidates the intricate relationship among a protein's amino acid sequence, its cotranslational nascent-chain elongation rate, and folding.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Sequência de Aminoácidos , Fenômenos Biofísicos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Pinças Ópticas , Modificação Traducional de Proteínas , Ribossomos/metabolismo , Imagem Individual de Molécula , Eletricidade Estática
8.
Anal Chem ; 89(1): 751-758, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966894

RESUMO

Rheological measurements in biological liquids yield insights into homeostasis and provide information on important molecular processes that affect fluidity. We present a fully automated cantilever-based method for highly precise and sensitive measurements of microliter sample volumes of human blood plasma coagulation (0.009 cP for viscosity range 0.5-3 cP and 0.0012 g/cm3 for density range 0.9-1.1 g/cm3). Microcantilever arrays are driven by a piezoelectric element, and resonance frequencies and quality factors of sensors that change over time are evaluated. A highly accurate approximation of the hydrodynamic function is introduced that correlates resonance frequency and quality factor of cantilever beams immersed in a fluid to the viscosity and density of that fluid. The theoretical model was validated using glycerol reference solutions. We present a surface functionalization protocol that allows minimization of unspecific protein adsorption onto cantilevers. Adsorption leads to measurement distortions and incorrect estimation of the fluid parameters (viscosity and density). Two hydrophilic terminated self-assembled monolayers (SAMs) sensor surfaces are compared to a hydrophobic terminated SAM coating. As expected, the hydrophobic modified surfaces induced the highest mass adsorption and could promote conformational changes of the proteins and subsequent abnormal biological activity. Finally, the activated partial thromboplastin time (aPTT) coagulation assay was performed, and the viscosity, density, and coagulation rate of human blood plasma were measured along with the standard coagulation time. The method could extend and improve current coagulation testing.

9.
Beilstein J Nanotechnol ; 7: 138-148, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925362

RESUMO

DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA-protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot-streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein-DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition in time-critical molecular motor studies.

10.
Chem Commun (Camb) ; 51(94): 16778-81, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26434731

RESUMO

An efficient, high-throughput method for the formation of densely packed molecular films on graphene is reported. The films exhibit high stability and remain intact during a subsequent derivatisation reaction, offering a versatile route for the non-covalent functionalisation of graphene.

11.
Nanoscale ; 6(14): 8242-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24931547

RESUMO

A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these results. Theoretical comparison and finite element modelling confirm experimental findings and allow for determination of the hyphal elastic modulus.


Assuntos
Aspergillus niger/fisiologia , Nanotecnologia , Esporos Fúngicos/crescimento & desenvolvimento , Técnicas Biossensoriais/instrumentação , Módulo de Elasticidade , Nanotecnologia/instrumentação
12.
Nanotechnology ; 25(22): 225501, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24807191

RESUMO

We investigate here the nanomechanical response of microcantilever sensors in real-time for detecting a range of ultra-low concentrations of oligonucleotides in a complex background of total cellular RNA extracts from cell lines without labeling or amplification. Cantilever sensor arrays were functionalized with probe single stranded DNA (ssDNA) and reference ssDNA to obtain a differential signal. They were then exposed to complementary target ssDNA strands that were spiked in a fragmented total cellular RNA background in biologically relevant concentrations so as to provide clinically significant analysis. We present a model for prediction of the sensor behavior in competitive backgrounds with parameters that are indicators of the change in nanomechanical response with variation in the target and background concentration. For nanomechanical assays to compete with current technologies it is essential to comprehend such responses with eventual impact on areas like understanding non-coding RNA pharmacokinetics, nucleic acid biomarker assays and miRNA quantification for disease monitoring and diagnosis to mention a few. Additionally, we also achieved a femtomolar sensitivity limit for online oligonucleotide detection in a non-competitive environment with these sensors.


Assuntos
Sondas de DNA , DNA de Cadeia Simples , Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos/análise , RNA/química , Nanotecnologia
13.
FEBS Lett ; 585(12): 1859-63, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21549117

RESUMO

We show that optical tweezers are a valuable tool to study the co-translational folding of a nascent polypeptide chain at the ribosome in real-time. The aim of this study was to demonstrate that a stable and intact population of ribosomes can be tethered to polystyrene beads and that specific hook-ups to the nascent polypeptide chain by dsDNA handles, immobilized on a second bead, can be detected. A rupture force of the nascent chain in the range of 10-50 pN was measured, which demonstrates that the system is anchored to the surface in a stable and specific way. This will allow in numerous future applications to follow protein folding using much lower forces.


Assuntos
Pinças Ópticas , Biossíntese de Proteínas , Dobramento de Proteína , Peptídeos/metabolismo , Ribossomos/metabolismo
14.
Anal Chem ; 82(14): 6299-302, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20568715

RESUMO

The applicability of single-molecule fluorescence assays in liquids is limited by diffusion to concentrations in the low picomolar range. Here, we demonstrate quantitative single-molecule detection at attomolar concentrations within 1 min by excitation and detection of fluorescence through a single-mode optical fiber in presence of turbulent flow. The combination of high detectability and short measurement times promises applications in ultrasensitive assays, sensors, and point-of-care medical diagnostics.


Assuntos
Corantes Fluorescentes/análise , Espectrometria de Fluorescência/métodos , Difusão , Transferência Ressonante de Energia de Fluorescência , Sistemas Automatizados de Assistência Junto ao Leito , Pontos Quânticos
15.
Nat Nanotechnol ; 4(3): 179-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19265848

RESUMO

Membrane proteins are central to many biological processes, and the interactions between transmembrane protein receptors and their ligands are of fundamental importance in medical research. However, measuring and characterizing these interactions is challenging. Here we report that sensors based on arrays of resonating microcantilevers can measure such interactions under physiological conditions. A protein receptor--the FhuA receptor of Escherichia coli--is crystallized in liposomes, and the proteoliposomes then immobilized on the chemically activated gold-coated surface of the sensor by ink-jet spotting in a humid environment, thus keeping the receptors functional. Quantitative mass-binding measurements of the bacterial virus T5 at subpicomolar concentrations are performed. These experiments demonstrate the potential of resonating microcantilevers for the specific, label-free and time-resolved detection of membrane protein-ligand interactions in a micro-array format.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriófagos , Proteínas de Escherichia coli/metabolismo , Ligantes , Ligação Proteica , Estabilidade Proteica , Proteolipídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Tempo
16.
Rev Sci Instrum ; 79(8): 086110, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19044391

RESUMO

A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.


Assuntos
Refratometria/instrumentação , Animais , Artefatos , Soluções Tampão , Bovinos , Desenho de Equipamento , Ouro/química , Concentração de Íons de Hidrogênio , Lasers , Microscopia Eletrônica de Varredura , Nanotecnologia , Ácido Palmítico/química , Fosfatos/química , Padrões de Referência , Soroalbumina Bovina/química , Cloreto de Sódio/química , Especificidade por Substrato , Compostos de Sulfidrila/química , Titânio/química
17.
PLoS One ; 3(11): e3610, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18978938

RESUMO

Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.


Assuntos
Bicamadas Lipídicas/metabolismo , Meliteno/metabolismo , Nanotecnologia/métodos , Adsorção , Fenômenos Biomecânicos/fisiologia , Biofísica/instrumentação , Biofísica/métodos , Lipossomos/metabolismo , Meliteno/fisiologia , Fluidez de Membrana/fisiologia , Modelos Biológicos , Nanotecnologia/instrumentação , Ligação Proteica , Propriedades de Superfície
18.
J Phys Chem B ; 112(23): 7140-4, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18476735

RESUMO

We describe a method to detect and count transient burstlike signals in the presence of a significant stationary noise. To discriminate a transient signal from the background noise, an optimum threshold is determined using an iterative algorithm that yields the probability distribution of the background noise. Knowledge of the probability distribution of the noise then allows the determination of the number of transient events with a quantifiable error (wrong-positives). We apply the method, which does not rely on the choice of free parameters, to the detection and counting of transient single-molecule fluorescence events in the presence of a strong background noise. The method will be of importance in various ultra sensing applications.


Assuntos
Sensibilidade e Especificidade , Algoritmos , Fluorescência
19.
PLoS Biol ; 6(2): e44, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18303950

RESUMO

The translocation of single-stranded DNA (ssDNA) across membranes of two cells is a fundamental biological process occurring in both bacterial conjugation and Agrobacterium pathogenesis. Whereas bacterial conjugation spreads antibiotic resistance, Agrobacterium facilitates efficient interkingdom transfer of ssDNA from its cytoplasm to the host plant cell nucleus. These processes rely on the Type IV secretion system (T4SS), an active multiprotein channel spanning the bacterial inner and outer membranes. T4SSs export specific proteins, among them relaxases, which covalently bind to the 5' end of the translocated ssDNA and mediate ssDNA export. In Agrobacterium tumefaciens, another exported protein-VirE2-enhances ssDNA transfer efficiency 2000-fold. VirE2 binds cooperatively to the transferred ssDNA (T-DNA) and forms a compact helical structure, mediating T-DNA import into the host cell nucleus. We demonstrated-using single-molecule techniques-that by cooperatively binding to ssDNA, VirE2 proteins act as a powerful molecular machine. VirE2 actively pulls ssDNA and is capable of working against 50-pN loads without the need for external energy sources. Combining biochemical and cell biology data, we suggest that, in vivo, VirE2 binding to ssDNA allows an efficient import and pulling of ssDNA into the host. These findings provide a new insight into the ssDNA translocation mechanism from the recipient cell perspective. Efficient translocation only relies on the presence of ssDNA binding proteins in the recipient cell that compacts ssDNA upon binding. This facilitated transfer could hence be a more general ssDNA import mechanism also occurring in bacterial conjugation and DNA uptake processes.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Canais Iônicos/metabolismo , Rhizobium/metabolismo , Sequência de Bases , Transporte Biológico , Biopolímeros/metabolismo , Primers do DNA , Cinética , Ligação Proteica
20.
Nucleic Acids Res ; 36(5): 1443-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18203749

RESUMO

The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic-hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation.


Assuntos
DNA/química , Tensoativos/química , Cátions/química , Cetrimônio , Compostos de Cetrimônio/química , Modelos Químicos , Pinças Ópticas , Compostos de Amônio Quaternário/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA