Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(20): E3944-E3953, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465432

RESUMO

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Fatores de Terminação de Peptídeos/metabolismo , Fosforilação , Domínios Proteicos/fisiologia , Isoformas de Proteínas/metabolismo , RNA Polimerase II/fisiologia , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina/metabolismo , Treonina/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica/genética
2.
Sci Rep ; 6: 27401, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264542

RESUMO

Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.


Assuntos
Divisão Celular , RNA Polimerase II/metabolismo , Treonina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrossomo/enzimologia , Humanos , Peso Molecular , Mutação , Fosforilação , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/química , Treonina/genética , Quinase 1 Polo-Like
3.
Transcription ; 6(5): 91-101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566685

RESUMO

Dynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD. The monoclonal antibody 1F5 recognizes K7me1/2 residues in CTD and reacts with RNAPIIA. Treatment of cellular extracts with phosphatase or of cells with the kinase inhibitor flavopiridol unmasked the K7me1/2 epitope in RNAPII0, consistent with the association of K7me1/2 marks with phosphorylated CTD peptides. Genome-wide profiling revealed high levels of K7me1/2 marks at the transcriptional start site of genes for sense and antisense transcribing RNAPII. The new K7 modifications further expand the mammalian CTD code to allow regulation of differential gene expression.


Assuntos
Lisina/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Acetilação , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Metilação , Modelos Moleculares , Estrutura Terciária de Proteína , RNA Polimerase II/genética , Iniciação da Transcrição Genética
4.
Elife ; 3: e02105, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24842994

RESUMO

In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.DOI: http://dx.doi.org/10.7554/eLife.02105.001.


Assuntos
Elementos Antissenso (Genética) , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Tirosina/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Mutação , Fosforilação , RNA Polimerase II/química , RNA Polimerase II/genética
5.
J Biol Chem ; 288(29): 21173-21183, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23744076

RESUMO

Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/enzimologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Flavonoides/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Knockout , Piperidinas/farmacologia , Processamento de Terminações 3' de RNA/efeitos dos fármacos , Processamento de Terminações 3' de RNA/genética , RNA Polimerase II/antagonistas & inibidores , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Nucleolar Pequeno/metabolismo , Ribonuclease III/metabolismo , Transcrição Gênica/efeitos dos fármacos
6.
Biochim Biophys Acta ; 1829(1): 55-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22982363

RESUMO

The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.


Assuntos
Proteínas Quinases/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Cinética , Modelos Biológicos , Fosforilação , Estrutura Terciária de Proteína/genética , RNA Polimerase II/fisiologia , Serina/química , Serina/metabolismo
7.
RNA Biol ; 9(9): 1144-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22960391

RESUMO

Eukaryotic RNA polymerase II (RNAP II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation of Ser2, Ser5 and Ser7 residues orchestrates the binding of transcription and RNA processing factors to the transcription machinery. Recent studies show that the two remaining potential phosphorylation sites, tyrosine-1 and threonine-4, are phosphorylated as well and contribute to the previously proposed "CTD code". With the impairment of binding of CTD interacting factors, these novel phosphorylation marks add an accessory layer of regulation to the RNAP II transcription cycle.


Assuntos
RNA Polimerase II/metabolismo , Treonina/metabolismo , Transcrição Gênica/fisiologia , Tirosina/metabolismo , Animais , Humanos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , RNA Polimerase II/genética , Sequências Repetitivas de Aminoácidos , Treonina/genética , Tirosina/genética
8.
Science ; 336(6089): 1723-5, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22745433

RESUMO

In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).


Assuntos
RNA Polimerase II/metabolismo , Tirosina/metabolismo , Domínio Catalítico , Imunoprecipitação da Cromatina , Células HeLa , Humanos , Fatores de Terminação de Peptídeos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo
9.
EMBO J ; 31(12): 2784-97, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22549466

RESUMO

Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5' and 3' regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3' region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells.


Assuntos
Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Treonina/metabolismo , Transcrição Gênica , Substituição de Aminoácidos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Genes Essenciais , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , RNA Polimerase II/genética , Proteínas Supressoras de Tumor
10.
Cell Stem Cell ; 10(2): 157-70, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22305566

RESUMO

Polycomb repressor complexes (PRCs) are important chromatin modifiers fundamentally implicated in pluripotency and cancer. Polycomb silencing in embryonic stem cells (ESCs) can be accompanied by active chromatin and primed RNA polymerase II (RNAPII), but the relationship between PRCs and RNAPII remains unclear genome-wide. We mapped PRC repression markers and four RNAPII states in ESCs using ChIP-seq, and found that PRC targets exhibit a range of RNAPII variants. First, developmental PRC targets are bound by unproductive RNAPII (S5p(+)S7p(-)S2p(-)) genome-wide. Sequential ChIP, Ring1B depletion, and genome-wide correlations show that PRCs and RNAPII-S5p physically bind to the same chromatin and functionally synergize. Second, we identify a cohort of genes marked by PRC and elongating RNAPII (S5p(+)S7p(+)S2p(+)); they produce mRNA and protein, and their expression increases upon PRC1 knockdown. We show that this group of PRC targets switches between active and PRC-repressed states within the ESC population, and that many have roles in metabolism.


Assuntos
Células-Tronco Embrionárias/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Camundongos , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Ligação Proteica/genética , Transporte Proteico , RNA Polimerase II/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Nat Struct Mol Biol ; 18(8): 956-63, 2011 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-21765417

RESUMO

Recent work has shown that RNA polymerase (Pol) II can be recruited to and transcribe distal regulatory regions. Here we analyzed transcription initiation and elongation through genome-wide localization of Pol II, general transcription factors (GTFs) and active chromatin in developing T cells. We show that Pol II and GTFs are recruited to known T cell-specific enhancers. We extend this observation to many new putative enhancers, a majority of which can be transcribed with or without polyadenylation. Importantly, we also identify genomic features called transcriptional initiation platforms (TIPs) that are characterized by large areas of Pol II and GTF recruitment at promoters, intergenic and intragenic regions. TIPs show variable widths (0.4-10 kb) and correlate with high CpG content and increased tissue specificity at promoters. Finally, we also report differential recruitment of TFIID and other GTFs at promoters and enhancers. Overall, we propose that TIPs represent important new regulatory hallmarks of the genome.


Assuntos
DNA/química , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/fisiologia , Fatores Genéricos de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Animais , Ilhas de CpG , Camundongos , Poliadenilação , RNA Polimerase II/química , Fatores Genéricos de Transcrição/química , Fatores Genéricos de Transcrição/fisiologia
12.
J Biol Chem ; 286(5): 3681-92, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21118815

RESUMO

La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.


Assuntos
Vírus La Crosse/patogenicidade , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Dano ao DNA , Estabilidade Enzimática , Humanos , Interferons/antagonistas & inibidores , RNA Polimerase II/antagonistas & inibidores , Ativação Transcricional , Células Vero
13.
Nat Struct Mol Biol ; 17(9): 1154-61, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20802488

RESUMO

Sequential modifications of the RNA polymerase II (Pol II) C-terminal domain (CTD) coordinate the stage-specific association and release of cellular machines during transcription. Here we examine the genome-wide distributions of the 'early' (phospho-Ser5 (Ser5-P)), 'mid' (Ser7-P) and 'late' (Ser2-P) CTD marks. We identify gene class-specific patterns and find widespread co-occurrence of the CTD marks. Contrary to its role in 3'-processing of noncoding RNA, the Ser7-P marks are placed early and retained until transcription termination at all Pol II-dependent genes. Chemical-genomic analysis reveals that the promoter-distal Ser7-P marks are not remnants of early phosphorylation but are placed anew by the CTD kinase Bur1. Consistent with the ability of Bur1 to facilitate transcription elongation and suppress cryptic transcription, high levels of Ser7-P are observed at highly transcribed genes. We propose that Ser7-P could facilitate elongation and suppress cryptic transcription.


Assuntos
Genoma , Família Multigênica , Fases de Leitura Aberta , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , RNA não Traduzido , Especificidade por Substrato , Transcrição Gênica
14.
J Biol Chem ; 285(1): 188-96, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19901026

RESUMO

The largest subunit of RNA polymerase II (RNAPII) C-terminal heptarepeat domain (CTD) is subject to phosphorylation during initiation and elongation of transcription by RNA polymerase II. Here we study the molecular mechanisms leading to phosphorylation of Ser-7 in the human enzyme. Ser-7 becomes phosphorylated before initiation of transcription at promoter regions. We identify cyclin-dependent kinase 7 (CDK7) as one responsible kinase. Phosphorylation of both Ser-5 and Ser-7 is fully dependent on the cofactor complex Mediator. A subform of Mediator associated with an active RNAPII is critical for preinitiation complex formation and CTD phosphorylation. The Mediator-RNAPII complex independently recruits TFIIB and CDK7 to core promoter regions. CDK7 phosphorylates Ser-7 selectively in the context of an intact preinitiation complex. CDK7 is not the only kinase that can modify Ser-7 of the CTD. ChIP experiments with chemical inhibitors provide evidence that other yet to be identified kinases further phosphorylate Ser-7 in coding regions.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Sequências Repetitivas de Aminoácidos , Serina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , DNA/metabolismo , Células HeLa , Humanos , Células Jurkat , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Purinas/farmacologia , Roscovitina , Moldes Genéticos , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
15.
Mol Cell ; 34(3): 387-93, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450536

RESUMO

Posttranslational modifications of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) specify a molecular recognition code that is deciphered by proteins involved in RNA biogenesis. The CTD is comprised of a repeating heptapeptide (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)). Recently, phosphorylation of serine 7 was shown to be important for cotranscriptional processing of two snRNAs in mammalian cells. Here we report that Kin28/Cdk7, a subunit of the evolutionarily conserved TFIIH complex, is a Ser7 kinase. The ability of Kin28/Cdk7 to phosphorylate Ser7 is particularly surprising because this kinase functions at promoters of protein-coding genes, rather than being restricted to promoter-distal regions of snRNA genes. Kin28/Cdk7 is also known to phosphorylate Ser5 residues of the CTD at gene promoters. Taken together, our results implicate the TFIIH kinase in placing bivalent Ser5 and Ser7 marks early in gene transcription. These bivalent CTD marks, in concert with cues within nascent transcripts, specify the cotranscriptional engagement of the relevant RNA processing machinery.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Quinases Ciclina-Dependentes/genética , Humanos , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Polimerase II/química , RNA Polimerase II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
16.
Trends Genet ; 24(6): 289-96, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18472177

RESUMO

In higher eukaryotes, an unusual C-terminal domain (CTD) is crucial to the function of RNA polymerase II in transcription. The CTD consists of multiple heptapeptide repeats; differences in the number of repeats between organisms and their degree of conservation have intrigued researchers for two decades. Here, we review the evolution of the CTD at the molecular level. Several primitive motifs have been integrated into compound heptads that can be readily amplified. The selection of phosphorylatable residues in the heptad repeat provided the opportunity for advanced gene regulation in eukaryotes. Current findings suggest that the CTD should be considered as a collection of continuous overlapping motifs as opposed to a specific functional unit defined by a heptad.


Assuntos
Evolução Molecular , RNA Polimerase II/química , RNA Polimerase II/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA Polimerase II/fisiologia , Sequências Repetitivas de Aminoácidos , Homologia de Sequência
17.
Science ; 318(5857): 1780-2, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18079404

RESUMO

RNA polymerase II is distinguished by its large carboxyl-terminal repeat domain (CTD), composed of repeats of the consensus heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Differential phosphorylation of serine-2 and serine-5 at the 5' and 3' regions of genes appears to coordinate the localization of transcription and RNA processing factors to the elongating polymerase complex. Using monoclonal antibodies, we reveal serine-7 phosphorylation on transcribed genes. This position does not appear to be phosphorylated in CTDs of less than 20 consensus repeats. The position of repeats where serine-7 is substituted influenced the appearance of distinct phosphorylated forms, suggesting functional differences between CTD regions. Our results indicate that restriction of serine-7 epitopes to the Linker-proximal region limits CTD phosphorylation patterns and is a requirement for optimal gene expression.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , Serina/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Anticorpos Monoclonais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Epitopos , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fosforilação , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA